2LL M.2 Module - Datasheet

Copyright 2025 © Embedded Artists AB

Document status: Preliminary

2LL M.2 Module Datasheet (EAR00500 / EAR00501)

- Wi-Fi 6, 802.11 a/b/g/n/ac/ax SISO HE20/MCS9
- Bluetooth 5.4 LE
- IEEE802.15.4
- SDIO 3.0 or USB2.0 interface
- Chipset: NXP IW610G

Get Up-and-Running Quickly and Start Developing Your Application on Day 1!

Embedded Artists AB

Rundelsgatan 14 211 36 Malmö Sweden

https://www.EmbeddedArtists.com

Copyright 2025 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of Embedded Artists AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and specifically disclaim any implied warranties or merchantability or fitness for any particular purpose. The information has been carefully checked and is believed to be accurate, however, no responsibility is assumed for inaccuracies.

Information in this publication is subject to change without notice and does not represent a commitment on the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements to this document.

Trademarks

All brand and product names mentioned herein are trademarks, services marks, registered trademarks, or registered service marks of their respective owners and should be treated as such.

Table of Contents

1	Document Information	4
1.1	Revision History	4
2	Introduction	5
2.1	Benefits of Using an M.2 Module to get Wireless Connectivity	5
2.2	More M.2 Related Information	5
2.3	ESD Precaution and Handling	6
2.4	Product Compliance	6
3	Specification	7
3.1	Power Up Sequence	8
3.2	External Sleep Clock	8
3.3	Mechanical Dimensions	9
3.4	M.2 Pinning	11
3.5	On-board I2C GPIO Expander	15
3.6	Block Diagram	16
3.7	IEEE802.15.4 Interface	16
3.8	SDIO Interface	17
3.9	Wi-Fi / Bluetooth Interface Control	18
3.10	Test Points and Expansion Header	19
3.11	Current Consumption Measurements	20
4	Antenna	21
4.1	Reference Certified External Antenna	21
4.2	Antenna Connector	21
4.3	Mounting and Clearance for On-board Antenna	22
4.4	Overriding on-board PCB Trace Antenna	23
4.5	On-board PCB Trace Antenna Performance	24
5	Software and Support	27
5.1	Software Driver	27
5.2	Support	27
6	Regulatory	28
6.1	European Union Regulatory Compliance	28
7	Disclaimers	29
7.1	Definition of Document Status	30

1 Document Information

This document applies to the following products.

Product Name	Type Number	Murata Module	Chipset	Product Status
2LL M.2 Module, rev PA3 and later	EAR00500 / EAR00501	LBES0ZZ2LL	NXP IW610G	Initial Production

This table below lists the product differences. All products are not stocked. Consult Embedded Artists for availability and lead time.

Type Number	Product Name	Antenna	Packaging
EAR00500	2LL M.2 Module	External antenna via u.fl.connector	Individual packing for evaluation
EAR00501	2LL M.2 Module	External antenna via u.fl.connector	Tray packing

1.1 Revision History

Revision	Date	Description	
PA1	2024-11-27	First version.	
PA2	2024-11-29	Corrected antenna information.	
PA3	2025-02-06	Removed Bluetooth Classic. Added information about current and TX power.	

2 Introduction

This document is a datasheet that specifies and describes the 2LL M.2 module mainly from a hardware point of view.

The main component in the design is Murata's 2LL module (full part number: LBES0ZZ2LL), which in turn is based on the NXP IW610G chipset, respectively. The 2LL module enables Wi-Fi and Bluetooth Low Energy (LE).

There are multiple application areas for the 2LL M.2 Module:

- Industrial and Buildings automation
- Asset management
- IoT applications
- Smart home: Voice assist device, smart printer, smart speaker, home automation gateway, and IP camera
- Retail/POS
- Healthcare and medical devices
- Smart city
- and many more...

2.1 Benefits of Using an M.2 Module to get Wireless Connectivity

There are several benefits to using an *M.2 module* to add connectivity to an embedded design:

- Drop-in, certified solution!
- Modular and flexible approach to evaluate different Wi-Fi / BT solutions with different tradeoffs around performance, cost, power consumption, longevity, etc.
- Access to maintained software drivers (Linux and SDK) with responsive support from Murata.
- Supported by Embedded Artists' Developer's Kits for i.MX RT/8/9 development, including advanced debugging support on carrier boards
- Futureproofing the design easy to replace with a newer module in the future
- One component to buy, instead of 40+
- No RF expertise is required
- Developed in close collaboration with Murata

2.2 More M.2 Related Information

For more information about the M.2 standard and Embedded Artists' adaptation, see: M.2 Primer For more general information about the M.2 standard, see: https://en.wikipedia.org/wiki/M.2 The official M.2 specification (PCI Express M.2 Specification) is available from: www.pcisig.com

2.3 ESD Precaution and Handling

Please note that the M.2 module come without any case/box and all components are exposed for finger touches – and therefore extra attention must be paid to ESD (electrostatic discharge) precaution, for example use of static-free workstation and grounding strap. Only qualified personnel shall handle the product.

Make it a habit always to first touch the mounting hole (which is grounded) for a few seconds with both hands before touching any other parts of the boards. That way, you will have the same potential as the board and therefore minimize the risk for

ESD.

In general, touch as little as possible on boards to minimize the risk of ESD damage. The only reasons to touch the board are when mounting/unmounting it on a carrier board.

Note that Embedded Artists does not replace modules that have been damaged by ESD.

2.4 Product Compliance

Visit Embedded Artists' website at http://www.embeddedartists.com/product_compliance for up-to-date information about product compliances such as CE, UKCA, RoHS2/3, Conflict Minerals, REACH, etc.

3 Specification

This chapter lists some of the more important characteristics of the M.2 module, but it is not a full specification of performance and timing. The main component in the design is Murata's 2LL module (full part number: LBES0ZZ2LL), which in turn is based around NXP's IW610G chipset.

For a detailed specification, see the LBES0ZZ2LL product page at Murata: https://www.murata.com/products/connectivitymodule/wi-fi-bluetooth/overview/lineup/type2ll For full specification, see Murata's 2LL Module (LBES0ZZ2LL) product page: url tbd

Module / Chipset	
Murata module	LBES0ZZ2LL
Chipset	NXP IW610G
Wi-Fi	
Standards	802.11a/b/g/n/ac/ax 1x1 SISO HE20/MCS9, Wi-Fi 6
Network	uAP and STA dual mode
Frequency	2.4GHz and 5 GHz band
Data rates	Up to 114.7 Mbps
Host interface	SDIO 3.0, SDR12@25MHz, SDR25@50MHz, SDR50@100MHz,
	SDR104@208MHz, DDR50@50MHz, or
	USB2.0
Bluetooth	
Standards	5.4 LE, 2Mbps PHY
Power Class	Class 1.5
Host interface	4-wire UART@4MBaud
Audio interface	PCM for audio
IEEE802.15.4	
Standards	IEEE 802.15.4-2015 compliant MAC, supporting Matter over Thread in 2.4 GHz band
PA	Integrated high power PA up to +15 dBm transmit power

Host interface	SPI@10MHz
	Note: the maximum SPI clock frequency is limited to 1MHz for Open
	1 2 1
	thread implementations.

Powering			
Operating conditions on supply voltage to M.2 module	Min	Тур	Max
	0.0V minimum 3.15V operating and	3.3V	3.46V

		RF specification	
Absolute maximum rating on suppl	y voltage to M.2 module	Min	Мах
Note: Do not exceed minimum o Module will be permanently dam	0.0V	3.63V	
Peak current	About 750 mA max	The power supply must to this peak current, which the happens during the started process.	typically
Receive mode current (WLAN)	95 mA typical max	Note that current consum widely between different modes.	•
Transmit mode current (WLAN)	570 mA typical max	Note that current consum widely between different modes.	

Environmental Specification	
Operational Temperature	-40 to +85 degrees Celsius
Storage Temperature	-40 to +85 degrees Celsius
Relative Humidity (RH), operating and storage	10 - 90% non-condensing

3.1 Power Up Sequence

The supply voltage shall not rise (10 - 90%) faster than 40 microseconds and not slower than 100 milliseconds.

Chipset signals PD_N (M.2 signal W_DISABLE1#) must be held low for at least 2 milliseconds after supply voltage has reached specification level before pulled high.

3.2 External Sleep Clock

The sleep clock signals can be applied to a powered and unpowered M.2 module.

Clock Specification				
Frequency	32.768 kHz			
Frequency accuracy	±250 ppm including initial tolerance, aging, temperature, etc.			
Duty cycle	30 - 70%			
Voltage level	3.3V logic, according to M.2 standard			

3.3 Mechanical Dimensions

The M.2 module is of type: 2230-D5-E according to the M.2 nomenclature. This means width 22 mm, length 30mm (without trace antenna), top and bottom side component height 1.5 mm and key-E connector. The table below lists the different dimensions and weight.

M.2 Module Dimension	Value (±0.15 mm)	Unit
Width	22	mm
Height, without pcb trace antenna	30	mm
PCB thickness	0.8	mm
Maximum component height on top side	1.5	mm
Maximum component height on bottom side	1.5	mm
Ground hole diameter	3.5	mm
Plating around ground hole, diameter	5.5	mm
Module weight	1.5 ±0.5 gram	gram

Embedded Artists has added a non-standard feature to the 2230 M.2 modules designed together with Murata, NXP and Infineon (former Cypress). The pictures below illustrate how the standard module size has been extended by 14 mm in the length direction to include a pcb trace antenna.

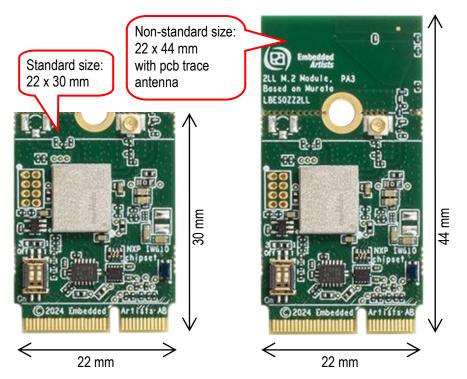


Figure 1 - M.2 Module with, and without, PCB Trace Antenna

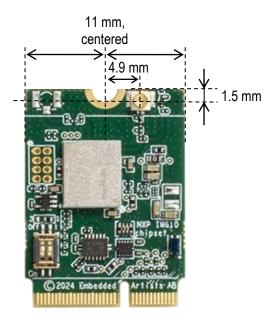


Figure 2 – M.2 Module Antenna Connector Measurements

3.4 M.2 Pinning

This section presents the pinning used for the M.2 module. It is essentially M.2 Key-E compliant with enhancements to support additional debug signals. The pin assignment for specific control has been jointly defined by Embedded Artists, Murata, NXP and Infineon.

The picture below illustrates the edge pin numbering. It starts on the right edge and alternates between the top and bottom side. The removed pads in the keying notch count (but are obviously non-existing).

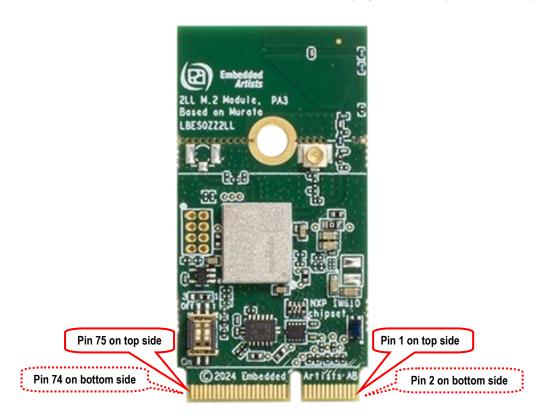


Figure 3 – M.2 Module Pin Numbering

The Wi-Fi interface uses the SDIO interface as default, but it is possible to configure the module to use the USB interface instead, see section 0for details. If Wi-Fi uses the SDIO interface, the Bluetooth interface uses the UART interface for control and PCM interface for audio. If Wi-Fi uses the USB interface, the Bluetooth interface also uses the USB interface.

The table below lists the pin usage for the 2LL M.2 modules. The column "When is signal needed" signals different categories:

- Always: These signals shall always be connected.
- Wi-Fi SDIO: These signals shall always be connected when the Wi-Fi SDIO interface is used.
- USB: These signals shall always be connected when the USB interface is used.
- Bluetooth UART (audio): These signals shall always be connected when the Bluetooth UART interface is used. If the USB interface is used, Bluetooth will also use the USB interface.
- IEEE802.15.4: These SPI signals shall always be connected when the IEEE802.15.4 interface is used.
- Optional: These signals are optional to connect.

Pin #	Side of pcb	M.2 Name	Voltage Level and Signal Direction	When is signal needed	Note
1	Тор	GND	GND	Always	Connect to ground
2	Bottom	3.3 V		Always	Power supply input. Connect to stable, low-noise 3.3V supply.
3	Тор	USB_D+		USB	For USB interface: USB_DP.
					Connected to 2LL module, signal USB_DP, pad 77
4	Bottom	3.3 V		Always	Power supply input. Connect to stable, low-noise 3.3V supply.
5	Тор	USB_D-		USB	For USB interface: USB_DM.
					Connected to 2LL module, signal USB_DM, pad 78
6	Bottom	LED_1#			Not connected.
7	Тор	GND	GND	Always	Connect to ground.
8	Bottom	PCM_CLK			Not connected.
9	Тор	SDIO CLK	1.8V Input to M.2	Wi-Fi SDIO	For Wi-Fi SDIO interface: SDIO_CLK
					Connected to 2LL module, signal SDIO_CLK, pad 44
10	Bottom	PCM_SYNC			Not connected.
11	Тор	SDIO CMD	1.8V I/O	Wi-Fi SDIO	For Wi-Fi SDIO interface: SDIO_CMD
					Connected to 2LL module, signal SDIO_CMD, pad 42
					Note: Require an external 10-100K ohm pullup
12	Bottom	PCM_OUT			Not connected.
13	Тор	SDIO DATA0	1.8V I/O	Wi-Fi SDIO	For Wi-Fi SDIO interface: SDIO_D0
					Connected to 2LL module, signal SDIO_DATA_0, pad 48
					Note: Require an external 10-100K ohm pullup
14	Bottom	PCM_IN			Not connected.
15	Тор	SDIO DATA1	1.8V I/O	Wi-Fi SDIO	For Wi-Fi SDIO interface: SDIO_D1
					Connected to 2LL module, signal SDIO_DATA_1, pad 45
					Note: Require an external 10-100K ohm pullup
16	Bottom	LED_2#			Not connected.
17	Тор	SDIO DATA2	1.8V I/O	Wi-Fi SDIO	For Wi-Fi SDIO interface: SDIO_D2
					Connected to 2LL module, signal SDIO_DATA_2, pad 47
					Note: Require an external 10-100K ohm pullup
18	Bottom	GND		Always	Connect to ground.
19	Тор	SDIO DATA3	1.8V I/O	Wi-Fi SDIO	For Wi-Fi SDIO interface: SDIO_D3
					Connected to 2LL module, signal SDIO_DATA_3, pad 46
					Note: Require an external 10-100K ohm pullup
20	Bottom	UART WAKE#	3.3V push-pull output	Bluetooth UART	For Bluetooth UART interface: NB_WAKE_OUT
			from M.2		This is a wake signal for the Bluetooth/802.15.4 interfaces from the device (Wi-Fi/BT chipset) to the host (CPU).
					Connected to 2LL module, via buffer, signal NB_WAKE_OUT, pad 76.
					This pin can also be JTAG_TDO output.
21	Тор	SDIO WAKE#	1.8V OD output from	Wi-Fi SDIO	For Wi-Fi SDIO interface WL_WAKE_OUT
			M.2		This is a wake signal for the Wi-Fi interface from the device (Wi-Fi/BT chipset) to the host (CPU).
					Connected to 2LL module, via buffer, signal WL_WAKE_OUT, pad 73

					This pin can also be JTAG_TDI input.
					Note: Require an external 10K pullup resistor to 1.8V
22	Bottom	UART TXD	1.8V output from M.2	Bluetooth UART	For Bluetooth UART interface: UART_SOUT/UART_TXD
					Connected to 2LL module, signal UART_SOUT, pad 49
23	Тор	SDIO RESET#	1.8V input to M.2	Optional	Independent reset signal for Wi-Fi functionality.
					Connected to 2LL module, signal IND_RST_WL, pad 63.
					SDIO RESET#: High = Wi-Fi part of module enabled/internally powered, Low = Wi-Fi disabled/powered down.
24	Key, non	existing			
25	Key, non	existing			
26	Key, non	existing			
27	Key, non	existing			
28	Key, non	existing			
29	Key, non	existing			
30	Key, non	existing			
31	Key, non	existing			
32	Bottom	UART_RXD	1.8V input to M.2	Bluetooth UART	For Bluetooth UART interface: UART_SIN/UART_RXD
					Connected to 2LL module, signal UART_SIN pad 51
33	Тор	GND		Always	Connect to ground.
34	Bottom	UART_RTS	1.8V output from M.2	Bluetooth UART	For Bluetooth UART interface: UART_RTSn
		-	·		Connected to 2LL module, signal UART_RTSn, pad 52
35	Тор	PERp0			Not connected.
36	Bottom	UART_CTS	1.8V input to M.2	Bluetooth UART	For Bluetooth UART interface: UART_CTSn
00	Bottom	0/11/1_010		Didotocal chara	Connected to 2LL module, signal UART_CTSn, pad 50
37	Тор	PERn0			Not connected.
38	Bottom	VENDOR	1.8V input to M.2	IEEE802.15.4	SPI MOSI, the SPI data signal (from host to M.2) for the
50	DOLIOIT	DEFINED		ILLL002.13.4	IEEE802.15.4/SPI interface.
					Connected to 2LL module, via buffer, signal SPI_RXD/PCM_SYNC, pin 6.
					The buffer is only enabled if bit 0 of the on-board I2C GPIO expander is set to 1.
39	Тор	GND		Always	Connect to ground.
40	Bottom	VENDOR	1.8V output from M.2	IEEE802.15.4	SPL_MISO, the SPI data signal (from M.2 to host) for the
		DEFINED			IEEE802.15.4/SPI interface.
					Connected to 2LL module, via buffer, signal SPI_TXD, pin 7. The buffer is only enabled if bit 0 of the on-board I2C GPIO
					expander is set to 1.
41	Тор	PETp0			Not connected.
42	Bottom	VENDOR DEFINED	1.8V input to M.2	IEEE802.15.4	SPI_SCK, the SPI clock signal (from host to M.2) for the IEEE802.15.4/SPI interface.
					Connected to 2LL module, via buffer, signal SPI_CLK, pin 8.
					The buffer is only enabled if bit 0 of the on-board I2C GPIO expander is set to 1.
43	Тор	PETn0			Not connected.
	Bottom	COEX3			Not connected.
44	DOLLOITI	OOLAO			

46	Bottom	COEX_TXD	1.8V I/O	Optional	Connected to 2LL module, signal GPIO_2, pad 58.
					Note: Signal can be JTAG_TCK
47	Тор	REFCLKp0			Not connected.
48	Bottom	COEX_RXD	1.8V I/O	Optional	Connected to 2LL module, signal GPIO_3, pad 59.
					Note: Signal can be JTAG_TMS
49	Тор	REFCLKn0			Not connected.
50	Bottom	SUSCLK			Not connected.
51	Тор	GND		Always	Connect to ground.
52	Bottom	PERST0#			Not connected.
53	Тор	CLKREQ0#			Not connected.
54	Bottom	W_DISABLE2#	3.3V input to M.2	Always	Independent reset signal for Bluetooth/ IEEE802.15.4 functionality.
					Connected to 2LL module, via buffer, signal IND_RST_NB, pad 64.
					W_DISABLE#2: High = Bluetooth part of module enabled/internally powered, Low = Bluetooth disabled/powered down.
55	Тор	PEWAKE0#			Not connected.
56	Bottom	W_DISABLE1#	3.3V input to M.2	Always	Connected to 2LL module, via buffer, signal PD_N, pad 10.
					W_DISABLE1#: High = The module is enabled/internally powered, Low = The module is disabled/powered down .
57	Тор	GND		Always	Connect to ground.
58	Bottom	I2C_SDA	1.8V I/O	IEEE802.15.4	I2C data signal, connected to on-board GPIO expander, PCAL6408A.
					The pin has a 10Kohm pullup resistor to an internal 1.8V.
59	Тор	Reserved			Not connected.
60	Bottom	I2C_CLK	1.8V input to M.2	IEEE802.15.4	I2C clock signal, connected to on-board GPIO expander, PCAL6408A.
					The pin has a 10Kohm pullup resistor to an internal 1.8V.
61	Тор	Reserved			Not connected.
62	Bottom	ALERT#	1.8V OD output from	IEEE802.15.4	SPI_INT, interrupt signal from the IEEE802.15.4/SPI interface.
			M.2		Connected to 2LL module, via an open-drain buffer, to signal SPI_INT, pin 5.
63	Тор	GND		Always	Connect to ground.
64	Bottom	RESERVED	1.8V input to M.2	IEEE802.15.4	SPI_SSEL, SPI select signal for the IEEE802.15.4/SPI interface.
					Connected to 2LL module, via buffer, signal SPI_FRM, pin 4.
					The buffer is only enabled if bit 0 of the on-board I2C GPIO expander is set to 1.
65	Тор	Reserved			Not connected.
66	Bottom	UIM_SWP			Not connected.
67	Тор	Reserved			Not connected.
68	Bottom	UIM_POWER_ SNK			Not connected.
69	Тор	GND		Always	Connect to ground.
70	Bottom	UIM_POWER_ SRC/GPIO_1			Not connected.
71	Тор	Reserved			Not connected.

72	Bottom	3.3 V	Always	Power supply input. Connect to stable, low-noise 3.3V supply.
73	Тор	Reserved		Not connected.
74	Bottom	3.3 V	Always	Power supply input. Connect to stable, low-noise 3.3V supply.
75	Тор	GND	Always	Connect to ground.

3.5 On-board I2C GPIO Expander

The IW610G chipsets need several control signals and there is a limited number of available pins in the M.2 standard. To create four output signals and one input signal, there is an on-board I2C GPIO expander, PCAL6408A. It can be accessed at I2C address 0x20 (7-bit address) or 0x40/0x41 (8-bit address).

The table below lists the usage of the four output signals and one input signal.

Bit	Signal Name	Direction	Usage / Connection
0	SPI_ENABLE	output	0 = The SPI interface of the IW610G chipset is not connected to M.2 pins 38, 40, 42, and 64. The SPI interface can however be accessed via the expansion header, see section 0for details.
			1= Connect SPI interface of IW610G chipset to M.2 pins 38, 40, 42 and 64.
1	IND_RST_15_4	output	Independent reset signal for IEEE802.15.4
			Connects to 2LL module, signal GPIO_11, pin 38
2	IND_WAKE_WLAN	output	Wi-Fi wakeup signal from host to IW610G chipset WL_WAKE_IN
			Connects to 2LL module, signal GPIO_16, pin 74
3	IND_WAKE_BT15_4	output	Bluetooth and IEEE802.15.4 wakeup signal from host to IW610G chipset.
			Connects to 2LL module, signal GPIO_17, pin 75.

3.6 Block Diagram

It can be difficult to understand the internal structure from just ready pin definitions. The block diagram below explains the 2LL M.2 internal structure with blocks instead. One of the I2C-GPIOs is used to control the buffer that enables/disables the SPI interface.

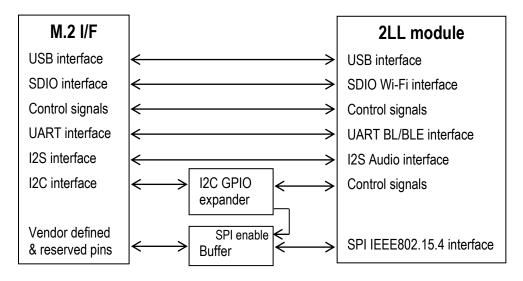


Figure 4 – 2LL M.2 Module Block Diagram

3.7 IEEE802.15.4 Interface

The IW610G chipset also implements an IEEE802.15.4 interface, which is a low-rate wireless personal area network (LR-WPAN) that was developed for low-data-rate monitor and control applications and extended-life low-power-consumption uses.

The IEEE802.15.4 functionality is accessed via an SPI interface. There is no standard SPI interface defined in the M.2 standard, but there are Vendor defined and reserved pins. These are used for the SPI interface. The 2LL M.2 module has a buffer that connects/disconnects the SPI interface IW610G chipset to the M.2 pins. This buffer is only enabled if bit 0 of the on-board I2C GPIO expander is set to 1.

Besides accessing the SPI interface with the M.2 pins, the SPI signals are also available via expansion connector JP1, see table below.

M.2 pin / name	JP1 pin	SPI signal	Direction	Connection
	1	GND	Ground	Ground
42 / VENDOR DEFINED	2	SPI_CLK / CLK	Input to M.2 Input to JP1	SPI_SCK, the SPI clock signal (from host to M.2) for the IEEE802.15.4/SPI interface.
64 / RESERVED	3	SPI_FRM / SSEL	Input to M.2 Input to JP1	SPI_SSEL, SPI select signal for the IEEE802.15.4/SPI interface.
38 / VENDOR DEFINED	4	SPI_RXD / MOSI	Input to M.2 Input to JP1	SPI_MOSI, the SPI data signal (from host to M.2) for the IEEE802.15.4/SPI interface.
40 / VENDOR DEFINED	5	SPI_TXD /	Output from	SPI_MISO, the SPI data signal

		MISO	M.2 Output from JP1	(from M.2 to host) for the IEEE802.15.4/SPI interface.
	6		Input to JP1	Independent reset signal for IEEE802.15.4 (from the I2C GPIO expander)
				Connects to 2LL module, signal GPIO_11, pin 38
				Note that the signal is connected to bit 1 of the on-board I2C GPIO expander. This pin must not be driven actively by the I2C GPIO expander. After reset/power cycle, all pins are high impedance, so it should not be a problem unless the I2C GPIO expanders registers are accessed.
62 / ALERT#	8	INT	Output from M.2	SPI_INT, the SPI interrupt signal (from M.2 to host) for the
			Output from JP1	IEEE802.15.4/SPI interface.

3.8 SDIO Interface

The SDIO interface conforms to the SDIO v3.0 specification, including the UHS-I modes, and is backward compatible with SDIO v2.0.

SDIO bus speed modes	Max SDIO clock frequency	Max bus speed	Signaling voltage according to M.2 specification
DS (Default speed)	25 MHz	12.5 MByte/s	1.8 V
HS (High speed)	50 MHz	25 MByte/s	1.8 V
SDR12	25 MHz	12.5 MByte/s	1.8 V
SDR25	50 MHz	25 MByte/s	1.8 V
SDR50	100 MHz	50 MByte/s	1.8 V
SDR104	208 MHz	100 MByte/s	1.8 V
DDR50	50 MHz	50 MByte/s	1.8 V

3.9 Wi-Fi / Bluetooth Interface Control

There are interface configuration pins on the IW610G chipset that control the interfaces to the different radio interfaces. With the help of two slider switches, it is possible to control these interfaces. Note that a power cycle is needed for changes to take effect.

The table below illustrates the two interface options, and the picture below illustrates the position of the slider switches.

Slider position	Wi-Fi interface	Bluetooth interface	IEEE802.15.4 interface
Both switches on OFF position (away from edge gold fingers)	SDIO	UART	SPI
Both switches on ON position (towards edge gold fingers)	USB	USB	SPI

Figure 5 – 2LL M.2 Module Wi-Fi Interface Control

3.10 Test Points and Expansion Header

There are some test points that can be of interest to probe for SDIO debugging purposes, as illustrated in the picture below. Expansion connector, JP1, allows access to the SPI bus in case the M.2 interface does not support the (non-standard) SPI interface.

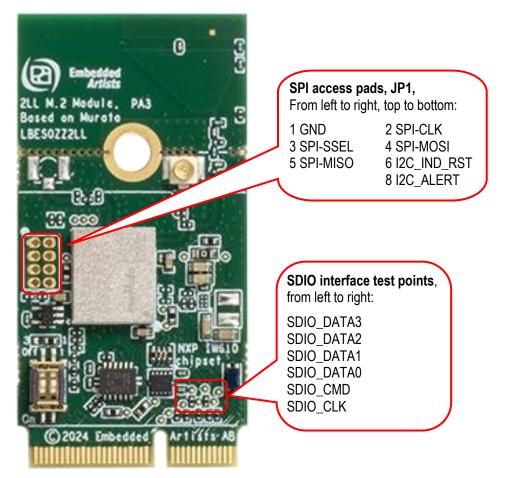


Figure 6 – 2LL M.2 Module Test Points

It is possible to measure the currents of the power supplies to the 2LL module, AVDD33, VIO and SD_VIO. AVDD33 is the 3.3V that is supplied directly from the M.2 interface and VIO and SD_VIO is an on-board 1.8V supply, generated from the supplied 3.3V via a linear regulator). If the external supply voltage (3.3V) to the M.2 module is measured it will be the sum of the AVDD33, VIO and SD_VIO currents. The pictures below illustrate where it is possible to measure the currents.

Note that zero-ohm resistors are mounted by default. Select a series resistor with as low resistance as possible to keep the voltage drop to a minimum. Keep the drop below 100mV. AVDD33 can be about 1000-500 milli ampere in peak which means that maximum series resistance is 100 milliOhm for the AVDD33 resistor. The maximum VIO and SD_VIO current is much lower, typically below 50mA. A suitable range for a resistor for this current is 1-2 ohm.

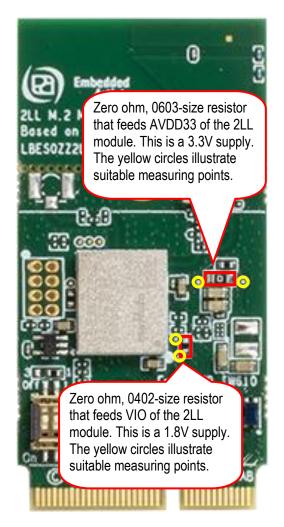


Figure 7 - Current Measurement

4 Antenna

This chapter addresses the antenna side of the module. There is an on-board, reference certified pcb trace antenna. This can be used for testing/evaluation purposes, but also for the final product. Also, for testing and evaluation purposes, it is possible to disconnect the on-board antenna and instead use the u.fl. connectors to connect external antennas.

4.1 Reference Certified External Antenna

There are two reference certified antennas to choose from, see table below.

Antenna type	Supplier	Antenna Part Number	Frequency (MHz)	Peak Antenna Gain (dBi)
Monopole	Murata	On-board	5925-7125	2.5
Dipole	Unictron	WT32D1-KX	5925-7125	4

Unictron H2B1WD1A3B0200 is a balanced, dipole-type, high efficiency antenna. It is ground plane independent, tripple band antenna that supports the 2400-2485MHz, 5150-5850MHz and 5925-7125 MHz frequency bands. The physical size is $32 \times 13 \times 1.5$ mm. The antenna cable is 119 ±5 mm and the connector is MHF-I, which is a U.FL compatible connector.

Unictron H2B1WD1A3B0200 Wi-Fi 6 & 6E antenna is also referenced to as WT32D1-KX 001.

Figure 8 – Reference Certified Antenna

Note that no external antenna is included when ordering the evaluation bundle of the 2LL M.2 board.

4.2 Antenna Connector

The M.2 standard specifies a 1.5 mm outer ring diameter male connector, which is compatible with the Murata MSC and IPEX MHF4 connector specifications. This connector is not used since our M.2 modules also target industrial users, where the Hirose U.FL. connector standard is more commonly used. U.FL. is compatible with the IPEX MHF1 connector specification.

4.3 Mounting and Clearance for On-board Antenna

Ideally, arrange the M.2 module so that the antenna is located at a corner of the product. Keep plastic case (i.e., non-metallic) away from the antenna area with at least 5 mm clearance (in all directions). Also keep any metal elements (e.g., connectors, battery, etc.) away from the antenna area with at least 5 mm clearance (in all directions). Keep a clearance area under and above the antenna area of at least 7.5mm, both under and over the PCB.

Human hands or body parts should be kept away (in normal use case) from the antenna area.

The ground hole in the middle shall be grounded. Use a metal stand-off according to M.2 standard (height suitable for selected M.2 connector) and use metal screw to create a proper ground connection.

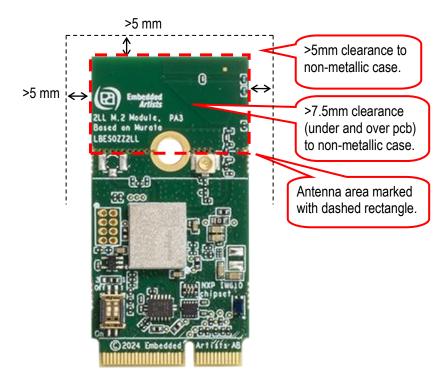


Figure 9 – M.2 Module Clearance Area

4.4 Overriding on-board PCB Trace Antenna

Per default, the on-board PCB trace antenna is used. The antenna connection from the 2LL module can be redirected to the U.FL. connector by just moving one zero ohm 0201 series resistor, see illustration below. The on-board trace antenna can be left as-is, or the antenna part can be snapped-off.

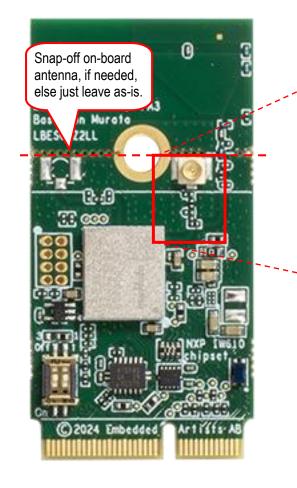


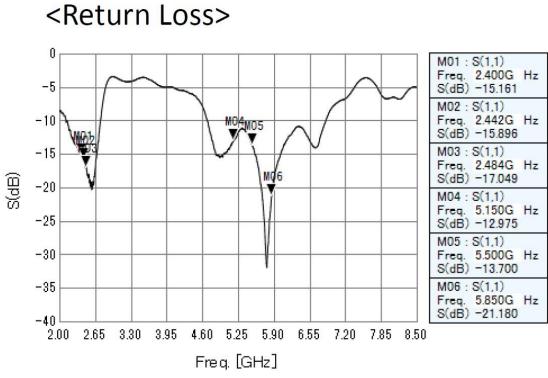
Figure 10 - Rework to Connect U.FL. Connector

For external antenna via U.FL. connector: Mount a 0 ohm 0201size resistor in the green rectangle.

For external antenna via U.FL. connector: Remove the 0 ohm 0201-size resistor in the red rectangle.

4.5 On-board PCB Trace Antenna Performance

The on-board pcb trace antenna type is monopole, certified by Murata.


The table below lists total efficiency:

Measurement condition			Frequen	icy MHz	-	ciency in B	Total Efficiency in %			
	2400	2442	2484	5150	5500	5850	Average 2 GHz band	Average 5 GHz band	Average 2 GHz band	Average 5 GHz band
Certified trace antenna	-1.0	-1.0	-0.9	-1.3	-1.6	-1.5	-1.0	-1.5	80.1	71.5

The table below lists peak gain:

Measurement			Frequer	Max dBi				
condition	Frequency 2400 2442 2484 2.6 2.4 2.5	5150	5500	5850	Max 2 GHz band	Max 5 GHz band		
Certified trace antenna	2.6	2.4	2.5	3.5	3.6	3.5	2.6	3.64

The pictures below illustrate the return loss and efficiency.

Figure 11 - Return Loss for Certified Trace Antenna

<Efficiency>

							[dBi]	[dB]
LINEAR		XY-	olane	YZ-	olane	ZX-p	olane	Total
POLARIZAT	ION	hor.	ver.	hor.	ver.	hor.	ver.	Efficiency
2400 MHz	MAX.	-1.6	-0.9	2.6	-16.3	-2.2	1.0	
	AVE.	-4.9	-4.6	-2.0	-20.4	-8.3	-0.9	-1.0
2442 MHz	MAX.	-1.6	-0.8	2.4	-15.0	-2.0	1.1	
2442 11112	AVE.	E5.1 -4.6 -1.9 -19.5	-8.3	-0.7	-1.0			
2484 MHz	MAX.	-1.7	-0.7	2.5	-13.6	-1.7	1.6	
	AVE.	-5.2	-4.5	-1.6	-18.7	-8.2	-0.5	-0.9

							[dBi]	[dB]
LINEAR		XY-plane YZ-plane		ZX-plane		Total		
POLARIZATION		hor.	ver.	hor.	ver.	hor.	ver.	Efficiency
5150 MHz	MAX.	2.3	0.1	2.2	- <mark>11.4</mark>	3.5	-0.2	
	AVE.	-4.1	-4.5	-2.0	-19.2	-3.9	-3.9	-1.3
5500 MHz	MAX.	2.3	-0.6	1.0	-12.7	3.6	<mark>-1.8</mark>	
3300 14112	AVE.	-4.3	-5.0	-2.4	-20.0	-4.3	-5.1	-1.6
5850 MHz	MAX.	2.3	-0.7	1.0	-12.9	3.5	-1.6	
	AVE.	-4.1	-5.4	-2.4	- <mark>1</mark> 9.8	-4.2	-5.5	-1.5

Figure 12 – Efficiency for Certified Trace Antenna

The directivity measurements are presented below for the 2 GHz and 5GHz bands with the orientation as illustrated below.

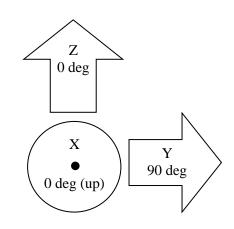


Figure 13 –Plane Orientations

<Directivity>

@2442MHz

х	Y plan	e [dBi]	Y	Z plar	1e [dBi]	z	X plan	e [dBi]
270	a contraction of the second se	90 horizontal	270		90 horizontal	270		90 horizontal vertical
	HOR.	VER.		HOR.	VER.		HOR.	VER.
MAX	-1.6	-0.8	MAX	2.4	-15.0	MAX	-2.0	1.1
AVE	-5.1	-4.6	AVE	-1.9	-19.5	AVE	-8.3	-0.7

@5500MHz

Х	Y plar	e [dBi]	Y	Z plar	ie [dBi]	Z	X plan	e [dBi]
270		90 horizon tal vertical	270		90 hori zon tal vertical	270		90 horizontal vertical
	HOR.	VER.		HOR.	VER.		HOR.	VER.
MAX	2.3	-0.6	MAX	1.0	-12.7	MAX	3.6	-1.8
AVE	-4.3	-5.0	AVE	-2.4	-20.0	AVE	-4.3	-5.1

Figure 14 – Directivity for Certified Trace Antenna

5 Software and Support

This chapter contains information about software and support.

5.1 Software Driver

The IW610G chipset does not contain any persistent software. A firmware image must be downloaded by the host at start-up. This is the responsibility of the operating system driver.

There are three different cases, depending on which host processor is used:

1. Embedded Artists' Computer-on-Modules, (u)COM, as host processor

Embedded Artists' Linux BSPs and SDKs for the different (u)COM board contains all drivers available and pre-configured. Everything has been tested and works out-of-the-box on the different iMX Developer's Kits.

iMX Developer's Kit	2LL M.2 support
iMX93 uCOM	Preliminary support in Linux BSP v6.6.23
iMX8M Mini uCOM	Preliminary support in Linux BSP v6.6.23
iMX8M Nano uCOM	No
iMX8M COM	No
iMX7 Dual COM	No
iMX7 Dual uCOM	No
iMX7ULP uCOM	No
iMX6 Quad COM	No
iMX6 DualLite COM	No
iMX6 SoloX COM	No
iMX6 UltraLite/ULL COM	No
iMX RT1176 uCOM	No
iMX RT1166 uCOM	No
iMX RT1064 uCOM	No
iMX RT1062 OEM	No

2. Other i.MX based, for example NXP's EVKs

Murata has created documentation how to compile the Linux kernel for the NXP EVKs https://wireless.murata.com/products/rf-modules-1/wi-fi-bluetooth-for-nxp-i-mx.html#Linux

3. Non-i.MX host processor

There is no ready-to-go driver exist. Contact Murata to check driver availability on the hardware platform used.

5.2 Support

Embedded Artists supports customers that use our M.2 module in combination with Embedded Artists' Computer-on-Modules, (u)COM, based on NXP's i.MX RT/8/9 families.

For other platforms, support is provided by Murata via their Community Support Forum: https://community.murata.com/s/topic/0TO5F0000002TLWWA2/connectivity-modules

6 Regulatory

The Murata 2LL module is reference certified. See the LBES0ZZ2LL datasheet from Murata for details.

6.1 European Union Regulatory Compliance

EUROPEAN DECLARATION OF CONFORMITY (Simplified DoC per Article 10.9 of the Radio Equipment Directive 2014/53/EU)

This apparatus, namely 2LL M.2 module (pn EAR00500 / EAR00501) conforms to the Radio Equipment Directive (RED) 2014/53/EU. The full EU Declaration of Conformity for this apparatus can be found at this location: https://www.embeddedartists.com/products/2ll-m-2-module/, see document 2LL M.2 module Declaration of Conformity.

The following information is provided per Article 10.8 of the Radio Equipment Directive 2014/53/EU:

- (a) Frequency bands in which the equipment operates.
- (b) The maximum RF power transmitted.

PN	RF Technology	(a) Frequency Ranges (EU)	(b) Max Transmitted Power
EAR00500 / EAR00501	Bluetooth LE	2400 MHz – 2484 MHz	13 dBm
EAR00500 / EAR00501	Wi-Fi IEEE 802.11b/g/n	2400 MHz – 2484 MHz	19 dBm
EAR00500 / EAR00501	Wi-Fi IEEE 802.11a/n/ac/ax	5150 MHz – 5850 MHz	18 dBm

The 2LL M.2 module complies with the Directive 2011/65/EU (EU RoHS 2) and its amendment Directive (EU) 2015/863 (EU RoHS 3).

7 Disclaimers

Embedded Artists reserves the right to make changes to information published in this document, including, without limitation, specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Customer is responsible for the design and operation of their applications and products using Embedded Artists' products, and Embedded Artists accepts no liability for any assistance with applications or customer product design. It is the customer's sole responsibility to determine whether the Embedded Artists' product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third-party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Customer is required to have expertise in electrical engineering and computer engineering for the installation and use of Embedded Artists' products.

Embedded Artists does not accept any liability related to any fault, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third-party customer(s). The customer is responsible for doing all necessary testing for the customer's applications and products using Embedded Artists' products to avoid a default of the applications and the products or of the application or use by customer's third-party customer(s). Embedded Artists does not accept any liability in this respect.

Embedded Artists does not accept any liability for errata on individual components. Customer is responsible to make sure all errata published by the manufacturer of each component are taken note of. The manufacturer's advice should be followed.

Embedded Artists does not accept any liability and no warranty is given for any unexpected software behavior due to deficient components.

Customer is required to take note of manufacturer's specification of used components. Such specifications, if applicable, contain additional information that must be taken note of for the safe and reliable operation.

All Embedded Artists' products are sold pursuant to Embedded Artists' terms and conditions of sale: http://www.embeddedartists.com/sites/default/files/docs/General_Terms_and_Conditions.pdf

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third-party products or services it shall not be deemed a license grant by Embedded Artists for the use of such third-party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third-party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN EMBEDDED ARTISTS' TERMS AND CONDITIONS OF SALE EMBEDDED ARTISTS DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF EMBEDDED ARTISTS PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY THE CEO OF EMBEDDED ARTISTS, PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, NUCLEAR, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of Embedded Artists' products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by Embedded Artists

for the Embedded Artists' product or service described herein and shall not create or extend in any manner whatsoever, any liability of Embedded Artists.

This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

7.1 Definition of Document Status

Preliminary – The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Embedded Artists does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. The document is in this state until the product has passed Embedded Artists product qualification tests.

Approved – The information and data provided define the specification of the product as agreed between Embedded Artists and its customer, unless Embedded Artists and customer have explicitly agreed otherwise in writing.