

 Getting Started with M.2 Modules and i.MX 6/7/8

Copyright 2022 © Embedded Artists AB

Getting Started with
M.2 Modules and i.MX 6/7/8

on Linux v5.10

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 2

Copyright 2022 © Embedded Artists AB Rev A

Embedded Artists AB
Rundelsgatan 14
SE-211 36 Malmö
Sweden

https://www.EmbeddedArtists.com

Copyright 2022 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of
Embedded Artists AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and
specifically disclaim any implied warranties or merchantability or fitness for any particular purpose.
Information in this publication is subject to change without notice and does not represent a
commitment on the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements on this document. Send your comments
by using the contact form: www.embeddedartists.com/contact-us/

Trademarks

All brand and product names mentioned herein are trademarks, services marks, registered
trademarks, or registered service marks of their respective owners and should be treated as such.

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 3

Copyright 2022 © Embedded Artists AB Rev A

Table of Contents
1 Document Revision History 5

2 Introduction ... 6

2.1 Conventions .. 7

3 QuickStart Guide ... 8

3.1 Step #1: Follow "Getting Started" Guide 8

3.2 Step #2: Mount M.2 Module ... 10

3.3 Step #3: Configure the system for the mounted M.2 module ... 12

3.3.1 iMX uCOM Boards with On-Board Solutions 14

3.4 Step #4: Linux Console – Search for available networks 15

3.4.1 Optional Manual Network Control .. 16

3.5 Step #5: Access and Configure Bluetooth Devices 17

3.5.1 Additional Links ... 19

3.6 Wi-Fi: iperf3 Test .. 20

3.7 Wi-Fi: Check the Linux Boot Log .. 22

3.8 Wi-Fi: HostAP ... 23

3.8.1 Setup hostapd for Infineon/Cypress based Chipsets 23

3.8.2 Setup for NXP based Chipsets .. 23

3.8.3 Connecting with a client... 24

3.8.4 Example - iperf3 on Android .. 26

3.8.5 Where to go from here?... 27

3.9 Bluetooth: keyboard .. 28

4 iMX Developer’s Kit Differences (V2 vs V3) 30

4.1 uCOM Carrier Board (aka iMX Developer’s Kit V3) Features 31

4.1.1 VBAT Powering ... 31

4.1.2 VBAT Current Measurement ... 32

4.1.3 Bluetooth UART Voltage Level (UART-C) 32

4.1.4 Audio Signal Voltage Level.. 32

4.1.5 JTAG Debug Channel ... 32

4.2 COM Carrier Board V2 Advanced Features................................ 33

4.2.1 VBAT Current Measurement ... 33

4.2.2 VBAT 3.3V or 3.6V .. 34

4.2.3 Support for 3.3V IO logic level (if M.2 module supports it)........... 34

4.2.4 Bluetooth UART Interception ... 34

4.2.5 Dual UART Debug Channels and JTAG...................................... 36

4.2.6 Audio Codec Multiplexing .. 36

5 Appendix - Software Update 37

5.1 Linux Host Setup .. 37

5.1.1 Introduction .. 37

5.1.2 Download Yocto recipes .. 37

5.2 Building Images .. 38

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 4

Copyright 2022 © Embedded Artists AB Rev A

5.2.1 Available Images ... 38

5.2.2 Machine Configurations ... 38

5.2.3 Initialize Build .. 38

5.2.4 Starting the Build ... 38

5.3 Building without Yocto .. 39

5.3.1 Stand-alone Toolchain .. 39

5.3.2 Build Linux kernel from source code ... 39

5.3.3 Build u-boot from source code ... 41

6 Appendix - Deploying Images 42

6.1 Download the Tool ... 42

6.2 Prepare hardware ... 42

6.3 uCOM Carrier Board (iMX Developer’s Kit V3): OTG boot mode –
JP12 Jumper .. 43

6.4 COM Carrier Board (iMX Developer’s Kit V2): OTG boot mode –
J2 Jumper ... 44

6.5 Configurations .. 44

6.6 Download Your Own Images ... 45

6.7 Run the Tool in Ubuntu .. 45

6.8 Run the Tool in Windows... 45

6.9 Troubleshoot .. 47

7 Appendix - Updating Files on Target 49

7.1 U-boot USB Mass Storage Gadget .. 49

7.2 Secure Copy from Target... 50

7.3 Secure Copy To Target - WinSCP ... 51

7.3.1 Download and Install ... 51

7.3.2 Connect to Target .. 52

7.3.3 Copy Files ... 54

7.4 USB Memory Stick ... 55

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 5

Copyright 2022 © Embedded Artists AB Rev A

1 Document Revision History
Revision Date Description

PA1 2022-02-09 Initial release

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 6

Copyright 2022 © Embedded Artists AB Rev A

2 Introduction
This document describes how to add wireless functionality with M.2 modules to an iMX Developer’s Kit
V2/V3. Linux commands for controlling wireless functionality are also presented.

This document is only valid for our Linux v5.10 release. There are similar documents that are valid
for our Linux v4.14 and V5.4 releases.

There are several different iMX Developer’s Kits and there are V2 and V3 versions of some kits, as
well. This document refers to all these kits collectively as iMX Developer’s Kits. Please note that all
available iMX Developer’s Kits may not support all the presented wireless technologies or more
specifically the interface used to communicate with a hardware module. The PCIe interface is for
example not supported by all i.MX processors.

The table below lists the processor / M.2 combinations that are supported. A check mark means that
combination is supported.

M
.2

 m
o

d
u

le

In
te

rf
ac

e

C
h

ip
se

t

 Embedded Artists module – Host processor

W
i-

F
i I

n
te

rf
ac

e

Id
en

ti
fi

er

iM
X

8M
 M

in
i u

C
O

M

iM
X

8M
 N

an
o

 u
C

O
M

iM
X

8M
 C

O
M

iM
X

7
D

u
al

u
C

O
M

/C
O

M

iM
X

6
Q

u
ad

/D
u

al
/

D
u

al
L

it
e

C
O

M

iM
X

6
S

o
lo

X
 C

O
M

iM
X

6
U

L
/U

L
L

 C
O

M

1XK M.2 SDIO NXP mlan0 √ √ √ √ √ √ √

1ZM M.2 SDIO NXP mlan0 √ √ √ √ √ √ √

2DS M.2 SDIO NXP mlan0 √ √ √ √ √ √ √

1YM-SDIO M.2 SDIO NXP mlan0 √ √ √ √ √ √ √

1YM-PCIe M.2 PCIe NXP mlan0 √ √ √ √ √

1XL M.2 PCIe NXP mlan0 √ √ √ √ √

2EL M.2 SDIO NXP mlan0 √ √ √ √ √ √ √

2AE M.2 SDIO Infineon wlan0 √ √ √ √ √ √ √

1XA M.2 PCIe Infineon wlan0 √ √ √ √ √

1YN M.2 SDIO Infineon wlan0 √ √ √ √ √ √ √

1LV M.2 SDIO Infineon wlan0 √ √ √ √ √ √ √

1MW M.2 SDIO Infineon wlan0 √ √ √ √ √ √ √

1DX M.2 SDIO Infineon wlan0 √ √ √ √ √ √ √

2EA-SDIO M.2 SDIO Infineon wlan0 √ √ √ √ √ √ √

2EA-PCIe M.2 PCIe Infineon wlan0 √ √ √ √ √

2BZ-SDIO M.2 SDIO Infineon wlan0 √ √ √ √ √ √ √

2BZ-PCIe M.2 PCIe Infineon wlan0 √ √ √ √ √

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 7

Copyright 2022 © Embedded Artists AB Rev A

All interfaces, needed tools and kernel configurations described in this document have been added /
enabled in the prepared images available at http://imx.embeddedartists.com/. To make changes to
your own build, see chapter 5 for instructions.

Additional documents you might need are:

• The Getting Started document for the iMX Developer's Kit you are using

• (u)COM Board Datasheet for the specific COM board you are using

• (u)COM Carrier Board Datasheet

• M.2 Module Datasheet for the specific M.2 module you are using

2.1 Conventions

A number of conventions have been used throughout to help the reader better understand the content
of the document.

Constant width text – is used for file system paths and command, utility and tool names.

$ This field illustrates user input in a terminal running on the

development workstation, i.e., on the workstation where you edit,

configure and build Linux

This field illustrates user input on the target hardware, i.e.,

input given to the terminal attached to the COM Board

This field is used to illustrate example code or excerpt from a

document.

This field is used to highlight important information

http://imx.embeddedartists.com/

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 8

Copyright 2022 © Embedded Artists AB Rev A

3 QuickStart Guide
This chapter is a step-by-step guide to get Wi-Fi and Bluetooth connections up in shortest possible
time. Below are the five simple steps to get up-and-running immediately!

1. Follow the “Getting Started” guide for powering the board and getting access to the console.

2. Mount the M.2 module.

3. Configure the system for the mounted M.2 module

4. Setup the Wi-Fi interface from the Linux console.

5. Access and configure the Bluetooth interface.

There are a couple of more sections describing different aspects, like performance measurements with
iperf and how to connect specific Bluetooth devices, like a keyboard.

3.1 Step #1: Follow "Getting Started" Guide

Before we continue you must identify if you have a V2 or V3 kit. The table below allows you to easily
identify the kit version you have.

iMX Developer’s Kit V2 iMX Developer’s Kit V3

Follow the instructions in the getting started guide
https://www.embeddedartists.com/
getting-started-with-imx-developers-kit-v2/ to get
access to the console and to connect the power
supply but keep the board powered off for now.

Follow the instructions in the getting started
guide https://www.embeddedartists.com/
getting-started-with-ucom-developers-kit/ to
get access to the console and to connect
the power supply but keep the board
powered off for now.

The red circle in the pictures above illustrates where the M.2 module is mounted.

https://www.embeddedartists.com/getting-started-with-imx-developers-kit-v2/
https://www.embeddedartists.com/getting-started-with-imx-developers-kit-v2/

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 9

Copyright 2022 © Embedded Artists AB Rev A

First, power-up your board and verify that you can see the console output when you boot your Linux
system. The boot log will look something like below.

U-Boot SPL 2021.04-5.10.35-2.0.0+g450892dd45 (Nov 24 2021 - 09:07:14

+0000)

power_bd71837_init

EA: Using gzipped ddr data from eeprom

DDRINFO: start DRAM init

DDRINFO: DRAM rate 3000MTS

DDRINFO:ddrphy calibration done

DDRINFO: ddrmix config done

Normal Boot

Trying to boot from MMC2

NOTICE: BL31: v2.4(release):lf-5.10.72-2.2.0-0-g5782363f9

NOTICE: BL31: Built : 12:17:17, Nov 18 2021

U-Boot 2021.04-5.10.35-2.0.0+g450892dd45 (Nov 24 2021 - 09:07:14 +0000)

CPU: i.MX8MMQ rev1.0 at 1200 MHz

Reset cause: POR

Model: Embedded Artists i.MX8MM COM Kit

DRAM: 1 GiB

Board: Embedded Artists iMX8M Mini Quad uCOM Ext

 00349, A1, WO1121

MMC: FSL_SDHC: 1, FSL_SDHC: 2

Loading Environment from MMC... OK

... (removed to save space)

Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x0000000000 [0x410fd034]

[0.000000] Linux version 5.10.72+g743730fc3894 (oe-user@oe-host)

(aarch64-poky-linux-gcc (GCC) 10.2.0, GNU ld (GNU Binutils)

2.36.1.20210209) #1 SMP PREEMPT Wed Feb 9 09:42:10 UTC 2022

[0.000000] Machine model: Embedded Artists i.MX8MM uCOM Kit

...

Verify that you are running the latest available Linux image available for your board. Check the
date you get in the red rectangle and compare it to what is available on
http://imx.embeddedartists.com/

The picture below illustrates an example for the iMX8M Mini Developer’s Kit. It you are not running on
the latest release it is recommended to download the image from xxx and follow the instructions in
chapter 6 to deploy/download the image.

Figure 1 – Release Date on Linux Distribution

Also note that the dates in the green rectangles are related to the boot loaders (U-Boot SPL and U-
Boot). These dates are not updated every time a new Linux release is made available so make sure it
is the date in the red rectangle that is compared.

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 10

Copyright 2022 © Embedded Artists AB Rev A

3.2 Step #2: Mount M.2 Module

Make sure the iMX Developer's Kit is powered off and then mount the M.2 Module. The picture below
illustrates the V2 kit COM Carrier board, and the principles are the same for the V3 kit uCOM Carrier
board.

Figure 2 – M.2 Module on COM Carrier Board V2

Do not put too much force/pressure on the M2 screw (into the M.2 connector stand-off) so that the
PCB is bent. Bending the PCB too much will damage the board!
Use your fingers on the bottom side (while screwing) to give a counterforce, keeping the PCB
straight.

Note that if you have a uCOM board with an on-board the Wi-Fi/BT module, then nothing needs to be
mounted. The Wi-Fi/BT module is already connected to the host processor. Also note that the M.2
interface on the carrier board is not enabled when there is an on-board Wi-Fi/BT module on the uCOM.

Figure 3 – uCOM with on-board Wi-Fi/BT Module

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 11

Copyright 2022 © Embedded Artists AB Rev A

The picture below illustrates the typical angle (about 25 degrees) to use when inserting the M.2 module
into the connector.

Figure 4 – M.2 Module on COM Carrier Board V2

The picture below illustrates how to use two fingers, placed under the grounding stand-off, to avoid
bending the board. Make sure to always use this method to avoid damaging the board.

Figure 5 – M.2 Module on COM Carrier Board V2

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 12

Copyright 2022 © Embedded Artists AB Rev A

3.3 Step #3: Configure the system for the mounted M.2 module

Set the Power on/off switch to On state to power up the board. When the boot process is complete you
will be presented with a login prompt. Enter the login credentials below to log in:

Username: root

Password: pass

Configuring the platform to use a Wi-Fi M.2 module (or an onboard chip) requires choosing a device
tree file to use, selecting libraries to use, setting up configuration files, setting up system services for
automatic connection to a network and configuring which geographical region the hardware is being
used in so to comply with local regulations. This has been split up into two helper scripts.

The first script is switch_module.sh that will select device tree file, configure libraries/utilities

and enable the correct systemd service based on which M.2 module will be used.

Run the script without parameters to see the full list of available module names

switch_module.sh

Version: 1.0

Usage:

 /usr/sbin/switch_module.sh <module>

Where:

 <module> is one of (case insensitive):

 CYW-SDIO, CYW-PCIe, 1CX, 1DX, 1LV, 1MW, 1YN, 2AE, 1XA, 1WZ

 1ZM, 1YM-SDIO, 1YM-PCIe, 1XK, 1XL, 2DS, CURRENT or OFF

CYW-SDIO is an alias for all Infineon/Cypress based modules using SDIO. CYW-PCIE is an alias for
all Infineon/Cypress based modules using PCIe. The OFF parameter will disable the systemd service
so that it will not automatically start after a reboot, but it will keep the rest of the system configuration.

As an example, to enable the 1ZM M.2 module:

switch_module.sh 1ZM

The second script, switch_regions.sh, is for regulatory conformance and it limits the available
frequencies to match the requirements in the specified geographical region. This support is only
available for a few Wi-Fi chips, at the time of writing this document they were: 1ZM, 1YM, 1XK and
2DS but the most updated list of supported modules can be found by running the script without any
parameters:

switch_regions.sh

Version: 1.0

Usage:

 /usr/sbin/switch_regions.sh <module> <country code>

Where:

 <module> is one of:

 1zm, 1ym, 1xk, 2ds

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 13

Copyright 2022 © Embedded Artists AB Rev A

 <country code> is one of:

 CA, EU, JP, US

 CA – Canada

 EU - European Union

 JP – Japan

 US - United States

NOTE: Country code for EU will be displayed as DE when you use the

command - iw reg get

 For setting the country code EU, user should use: iw reg set

DE

If you are using for example a 1ZM module in Europe then set the region with

switch_region.sh 1ZM EU

For the systemd service to work it must know which network to connect to and what the password is.
This information is stored in the /etc/wpa_supplicant.conf file. Open in in an editor (e.g.

vi or nano) and replace the part marked in the red rectangle below:

ctrl_interface=/var/run/wpa_supplicant

ctrl_interface_group=0

update_config=1

network={

 key_mgmt=NONE

}

If the SSID is Hello World and the password is MyPassword then change the file to

ctrl_interface=/var/run/wpa_supplicant

ctrl_interface_group=0

update_config=1

network={

 ssid=”Hello World”

 psk=”MyPassword”

}

If you are using a (u)COM board with onboard Wi-Fi, then follow the instructions in the next section to
complete the configuration before rebooting.

If you are using an M.2 Wi-Fi module then your network configuration is completed, and you can
reboot to test the new settings. The M.2 module should automatically connect to the desired network.

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 14

Copyright 2022 © Embedded Artists AB Rev A

3.3.1 iMX uCOM Boards with On-Board Solutions

At the time of writing this document, Embedded Artists supplied several iMX uCOM boards with
onboard chips. These boards require extra configuration to use as they use different device tree files.

iMX (u)COM Board iMX Developer’s Kit V3 iMX Developer’s Kit V2

iMX7 ULP uCOM with
onboard 1LV

Not supported imx7ulpea-ucom-kit_v2-1lv.dtb

iMX8M Mini uCOM with
onboard 1MW

imx8mm-ea-ucom-kit_v3-1mw.dtb imx8mm-ea-ucom-kit_v2-1mw.dtb

iMX8M Mini uCOM with
onboard 1ZM

As of February 2022, not
supported

As of February 2022, not
supported

iMX8M Nano uCOM with
onboard 1MW

imx8mn-ea-ucom-kit_v3-1mw.dtb imx8mn-ea-ucom-kit_v2-1mw.dtb

iMX8M Nano uCOM with
onboard 1ZM

As of February 2022, not
supported

As of February 2022, not
supported

Pick the name of the device tree file from the table above and then select your module with:

switch_module.sh <module name>

fw_setenv fdt_file <dtb file>

As an example, for an iMX8M Nano uCOM with onboard 1MW on an iMX Developer’s Kit V3

switch_module.sh 1MW

fw_setenv fdt_file imx8mn-ea-ucom-kit_v3-1mw.dtb

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 15

Copyright 2022 © Embedded Artists AB Rev A

3.4 Step #4: Linux Console – Search for available networks

When the boot process is complete you will be presented with a login prompt. Enter the login
credentials below to log in:

Username: root

Password: pass

The Wi-Fi modules use different device names – either mlan0 or wlan0. Use the table in section 2
to find out what your module is using. The examples below all use mlan0 as device name – just
replace it with wlan0 if that is what your module is using.

Run a scan of networks in range:

iw dev mlan0 scan

Or

iwlist mlan0 scan

Both commands are very verbose, so it is probably a good idea to limit the result like this:

iw dev mlan0 scan | grep SSID

 SSID: EA Guest

 SSID: VSG1

 SSID: COMHEM_73ee11

 SSID: DIRECT-4C-HP ENVY Photo 6200

 ...

Test the network connection with ping (stop with Ctrl+C):

ping www.sunet.se

PING www.sunet.se (192.36.171.231): 56 data bytes

64 bytes from 192.36.171.231: seq=0 ttl=56 time=16.412 ms

64 bytes from 192.36.171.231: seq=1 ttl=56 time=18.279 ms

64 bytes from 192.36.171.231: seq=2 ttl=56 time=19.125 ms...

If your router is not connected to Internet, then ping the IP number of the router instead. The IP
number can be found like this:

ip route

default via 192.168.0.1 dev mlan0 metric 10

192.168.0.0/24 dev mlan0 proto kernel scope link src 192.168.0.4

ping 192.168.0.1

PING 192.168.0.1 (192.168.0.1): 56 data bytes

64 bytes from 192.168.0.1: seq=0 ttl=56 time=16.412 ms

64 bytes from 192.168.0.1: seq=1 ttl=56 time=18.279 ms

64 bytes from 192.168.0.1: seq=2 ttl=56 time=19.125 ms...

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 16

Copyright 2022 © Embedded Artists AB Rev A

There are several ways to see the status of your connection and the network it is connection to. Here
is one example (not showing the output):

iw dev mlan0 link

To see the region setting (if supported by your module) use this command:

iw reg get

global

country DE: DFS-ETSI

 (2400 - 2483 @ 40), (N/A, 20), (N/A)

 (5150 - 5250 @ 80), (N/A, 23), (N/A), NO-OUTDOOR, AUTO-BW

 (5250 - 5350 @ 80), (N/A, 20), (0 ms), NO-OUTDOOR, DFS,

AUTO-BW

 (5470 - 5725 @ 160), (N/A, 26), (0 ms), DFS

 (5725 - 5875 @ 80), (N/A, 13), (N/A)

 (57000 - 66000 @ 2160), (N/A, 40), (N/A)

The output shows that the EU region (displayed as country DE) is selected.

3.4.1 Optional Manual Network Control

If you want to manually start the network instead of using the systemd service that switch_module.sh
sets up, then disable the service with this command and then reboot

switch_module.sh off

reboot

After rebooting configure the network name and password in /etc/wpa_supplicant.conf and then
connect to it with

#wpa_supplicant -B -i mlan0 -D nl80211 -c /etc/wpa_supplicant.conf

If that command completes successfully, you should be connected to the network. Check that you got
an IP number (192.168.1.5 in the example below):

ifconfig mlan0

mlan0 Link encap:Ethernet HWaddr 2C:4C:C6:F4:D3:D0

 inet addr:192.168.1.5 Bcast:192.168.1.255

Mask:255.255.255.0

 inet6 addr: fe80::2e4c:c6ff:fef4:d3d0/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:17 errors:0 dropped:0 overruns:0 frame:0

 TX packets:62 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:2319 (2.2 KiB) TX bytes:7447 (7.2 KiB)

If you don’t get an IP number, then run the following command to request one

udhcpc -i mlan0

The network should now work until you reboot or power down the hardware.

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 17

Copyright 2022 © Embedded Artists AB Rev A

3.5 Step #5: Access and Configure Bluetooth Devices

All the Bluetooth devices use the UART interface. The device name for that interface is different
depending on the (u)COM Board. You do not need to keep track of this device name since the
bluetooth_up.sh script handles this automatically.

You must follow the instructions in 3.3 and select the correct M.2 module before trying anything in
this section.

To bring up the Bluetooth interfaces run this command:

/opt/ea/bluetooth_up.sh

Setting TTY to N_HCI line discipline

Device setup complete

< HCI Command: ogf 0x3f, ocf 0x0009, plen 4

 C0 C6 2D 00

> HCI Event: 0x0e plen 4

 01 56 0C 00

[3065.661301] Bluetooth: hci0: sending frame failed (-49)

Setting TTY to N_HCI line discipline

Device setup complete

Scanning ...

To run a scan again, use hcitool scan

The output from the command is different and depends on which module is being used.

Note that there are a couple of error messages that can appear for the modules with NXP chipsets that
can be safely ignored (the second one is found in the output above):

“ Can't init device hci0: Invalid argument (22) “ or

“ Bluetooth: hci0: sending frame failed (-49) ” or

“Bluetooth: hci0: command 0x1001 tx timeout”

The module should now be up and running and to scan for other Bluetooth devices in range:

hcitool scan

Scanning ...

 94:87:0B:35:F2:19 Samsung Galaxy S7

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 18

Copyright 2022 © Embedded Artists AB Rev A

Use the interactive bluetoothctl command line tool to search for devices, pair with a device (the

Galaxy Nexus phone), connect to it and then find some information about it:

bluetoothctl

[bluetooth]# power on

[bluetooth]# agent on

[bluetooth]# scan on

Discovery started

[CHG] Controller D8:FC:93:E4:1E:A6 Discovering: yes

[NEW] Device B0:D0:00:38:00:C6 Galaxy Nexus

[NEW] Device 40:2B:A1:5F:7F:46 MW600

[bluetooth]# pair B0:D0:00:38:00:C6

Attempting to pair with B0:D0:00:38:00:C6

[CHG] Device B0:D0:00:38:00:C6 Connected: yes

[CHG] Device B0:D0:00:38:00:C6 Modalias: bluetooth:v000Fp1200d1436

[CHG] Device B0:D0:00:38:00:C6 UUIDs:

 00001105-0000-1000-8000-00805f9b34fb

 0000110a-0000-1000-8000-00805f9b34fb

 0000110c-0000-1000-8000-00805f9b34fb

 00001112-0000-1000-8000-00805f9b34fb

 00001115-0000-1000-8000-00805f9b34fb

 00001116-0000-1000-8000-00805f9b34fb

 0000111f-0000-1000-8000-00805f9b34fb

 0000112f-0000-1000-8000-00805f9b34fb

 00001200-0000-1000-8000-00805f9b34fb

[CHG] Device B0:D0:00:38:00:C6 Paired: yes

Pairing successful

[bluetooth]# scan off

[bluetooth]# devices

Device B0:D0:00:38:00:C6 Galaxy Nexus

[bluetooth]# connect B0:D0:9C:38:84:C6

Attempting to connect to B0:D0:9C:38:84:C6

[CHG] Device B0:D0:9C:38:84:C6 Connected: yes

Connection successful

[bluetooth]# info B0:D0:00:38:00:C6

Device B0:D0:00:38:00:C6

 Name: Galaxy Nexus

 Alias: Galaxy Nexus

 Class: 0x5a020c

 Icon: phone

 Paired: yes

 Trusted: yes

 Blocked: no

 Connected: yes

 LegacyPairing: no
 UUID: OBEX Object Push (00001105-0000-1000-8000-00805f9b34fb)

 UUID: Audio Source (0000110a-0000-1000-8000-00805f9b34fb)

 UUID: A/V Remote Control Target (0000110c-0000-1000-8000-00805f9b34fb)

 UUID: Headset AG (00001112-0000-1000-8000-00805f9b34fb)

 UUID: PANU (00001115-0000-1000-8000-00805f9b34fb)

 UUID: NAP (00001116-0000-1000-8000-00805f9b34fb)

 UUID: Handsfree Audio Gateway (0000111f-0000-1000-8000-00805f9b34fb)

 UUID: Phonebook Access Server (0000112f-0000-1000-8000-00805f9b34fb)

 UUID: PnP Information (00001200-0000-1000-8000-00805f9b34fb)

 Modalias: bluetooth:v000Fp1200d1436

[bluetooth] quit

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 19

Copyright 2022 © Embedded Artists AB Rev A

Using the sdptool command it is possible to find even more information (only showing first part

here):

sdptool browse B0:D0:00:38:00:C6

Browsing B0:D0:00:38:00:C6 ...

Service Name: Headset Gateway

Service RecHandle: 0x10000

Service Class ID List:

 "Headset Audio Gateway" (0x1112)

 "Generic Audio" (0x1203)

Protocol Descriptor List:

 "L2CAP" (0x0100)

 "RFCOMM" (0x0003)

 Channel: 2

Profile Descriptor List:

 "Headset" (0x1108)

 Version: 0x0102

3.5.1 Additional Links

https://wiki.archlinux.org/index.php/Bluetooth_headset

https://wiki.archlinux.org/index.php/Bluetooth

https://wiki.archlinux.org/index.php/Bluetooth_headset
https://wiki.archlinux.org/index.php/Bluetooth

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 20

Copyright 2022 © Embedded Artists AB Rev A

3.6 Wi-Fi: iperf3 Test

Ping is a great way to test if the hardware is connected to the network, or not, but to really test the
network interface it is better to use a program like iperf3. The program works with a client and a

server. The client is typically run on the (u)COM board and the server software can either be installed
on a computer on the local network (https://iperf.fr/iperf-download.php) or one of the online servers can
be used (https://iperf.fr/iperf-servers.php).

To run the test first start the server by running the program with the -s switch. On a server running
Linux the command looks like this:

$ iperf3 -s

Server listening on 5201

To improve the performance of iperf3, run the helper script /opt/ea/optimize_for_iperf3.sh:

/opt/ea/optimize_for_iperf3.sh

Done with configuration

Run performance test with:

iperf3 -c 192.168.50.2 -i 5 -t 20 -P 4

iperf3 -c bouygues.iperf.fr -i 5 -t 20 -P 4

iperf3 -c ping.online.net -i 5 -t 20 -P 4

iperf3 -c speedtest.serverius.net -p 5002 -i 5 -t 20 -P 4

iperf3 -c iperf.eenet.ee -p 5201 -i 5 -t 20 -P 4

iperf3 -c iperf.volia.net -p 5201 -i 5 -t 20 -P 4

or another server from https://iperf.fr/iperf-servers.php

It will change the CPU frequency governor to performance mode to achieve maximum performance. It
will also (for supported M.2 modules) set the minimum power consumption mode, set the driver power
management mode to constantly awake, enable frame burst and prevent all scans. The changes are
not permanent.

The next step is to run the client on the target hardware:

iperf3 -c 192.168.1.128 -p 5201 -i 1 -P 4

The most important parameter is the URL or IP number of the server, in this case 192.168.1.128 and
the port number reported by the server, in this case 5201. There are a lot of options that can be given
to the program. Use the --help option to see them all.

The client prints a lot during the test phase and in the end, it prints a summary like this:

[ID] Interval Transfer Bitrate Retr

[5] 0.00-10.00 sec 8.76 MBytes 7.35 Mbits/sec 1 sender

[5] 0.00-10.00 sec 8.67 MBytes 7.27 Mbits/sec receiver

[7] 0.00-10.00 sec 10.5 MBytes 8.81 Mbits/sec 1 sender

[7] 0.00-10.00 sec 10.2 MBytes 8.54 Mbits/sec receiver

[9] 0.00-10.00 sec 8.36 MBytes 7.02 Mbits/sec 4 sender

[9] 0.00-10.00 sec 8.20 MBytes 6.88 Mbits/sec receiver

[11] 0.00-10.00 sec 8.55 MBytes 7.17 Mbits/sec 1 sender

[11] 0.00-10.00 sec 8.47 MBytes 7.11 Mbits/sec receiver

[SUM] 0.00-10.00 sec 36.2 MBytes 30.4 Mbits/sec 7 sender

[SUM] 0.00-10.00 sec 35.5 MBytes 29.8 Mbits/sec receiver

https://iperf.fr/iperf-download.php
https://iperf.fr/iperf-servers.php

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 21

Copyright 2022 © Embedded Artists AB Rev A

The last two lines display the bandwidth for send (30.4Mbit/sec) and receive (29.8Mbit/sec). Note that
this number is limited by several factors: max bandwidth of the (u)COM board's CPU, any network
switches, network card in the PC and the PC performance. The summary above is from a test against
an online server so the internet connection also limits the speed.

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 22

Copyright 2022 © Embedded Artists AB Rev A

3.7 Wi-Fi: Check the Linux Boot Log

Start by checking that the module has been detected. For modules with Infineon/Cypress chipsets:

dmesg | grep brcm

brcmfmac: brcmf_c_preinit_dcmds: Firmware version = wl0: May 14

2018 04:48:55 version 13.10.271.107 (r689896) FWID 01-9d634183

For modules with NXP chipsets:

dmesg |grep -i "lan"

wlan: Loading MWLAN driver

wlan: Enable TX SG mode

wlan: Enable RX SG mode

Wlan: FW download over, firmwarelen=537492 downloaded 537492

WLAN FW is active

wlan: version = SD8987---16.92.10.p73-MX4X16169-GPL-(FP92)

wlan: Driver loaded successfully

If the command does not return something similar to the lines above, then make sure that 1) the
module is inserted correctly and 2) that the correct device was chosen when running
switch_module.sh.

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 23

Copyright 2022 © Embedded Artists AB Rev A

3.8 Wi-Fi: HostAP

Previous sections have described how to connect to a wireless network as a client. In this section we
will instead create our own network that other clients can connect to. The way to do this depends on
which M.2 module is being used so the instructions have been split into separate chapters below (3.8.1
and 3.8.2).

The chapters about connecting with a client and using iperf3 are the same for all modules.

3.8.1 Setup hostapd for Infineon/Cypress based Chipsets

For these modules we use hostapd (host access point daemon) which enables a network interface

card to act as an access point and authentication server. We will also use udhcpd (a DHCP

daemon) to assign IP addresses to connecting clients.

The code below will be for the 1XA module so replace 1XA with your module. The instructions will
result in an unprotected wireless network called test and the client will be assigned an IP number in
the 192.168.5.100 to 192.168.5.150 range.

switch_module.sh 1XA

/opt/ea/autostart_hostapd.sh enable

reboot

The new wireless network will automatically be available after the reboot.

To stop using hostapd and go back:

/opt/ea/autostart_hostapd.sh disable

switch_module.sh 1XA

reboot

What happens in the background?

• The /etc/hostapd.conf file is modified to use wlan1 as network interface. You can

modify the ssid=test line in this file to set a different network name.

• The /etc/udhcpd.conf file is copied and modified to use wlan1 as network interface

and to change to the wanted IP range

• An hostapd@wlan1 systemd service is enabled (will start after a reboot) that will handle
starting of hostapd as well as udhcpd

3.8.2 Setup for NXP based Chipsets

For these modules we use hostapd (host access point daemon) which enables a network interface

card to act as an access point and authentication server. We will also use udhcpd (a DHCP

daemon) to assign IP addresses to connecting clients.

The code below will be for the 1ZM module so replace 1ZM with your module. The instructions will
result in an unprotected wireless network called test and the client will be assigned an IP number in
the 192.168.5.100 to 192.168.5.150 range.

switch_module.sh 1ZM

/opt/ea/autostart_hostapd.sh enable

reboot

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 24

Copyright 2022 © Embedded Artists AB Rev A

The new wireless network will automatically be available after the reboot.

To stop using hostapd and go back:

/opt/ea/autostart_hostapd.sh disable

switch_module.sh 1ZM

reboot

What happens in the background?

• The /etc/hostapd.conf file is modified to use uap0 as network interface. You can

modify the ssid=test line in this file to set a different network name.

• The /etc/udhcpd.conf file is copied and modified to use uap0 as network interface

and to change to the wanted IP range

• An hostapd@uap0 systemd service is enabled (will start after a reboot) that will handle
starting of hostapd as well as udhcpd

3.8.3 Connecting with a client

Use a phone/laptop/tablet to search for available networks and the "test"/”Test_SSID” (or the ssid you
entered above) network should appear. It might look like this on a phone:

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 25

Copyright 2022 © Embedded Artists AB Rev A

Note that the status "Connected, no internet" appears as there is no route for the traffic from the phone
to Internet. It is possible (but out of scope for this document) to route the traffic to, for example, a wired
network connection on iMX (u)COM Boards with wired network interface(s).

Some phone models/version show the assigned IP number in this dialog, but the example phone does
not. If the default settings are used, then the assigned IP number will be 192.168.5.100.

To check which IP addresses have been assigned run the following command (not always working):

dumpleases

Mac Address IP Address Host Name Expires in

aa:5f:1b:40:22:ad 192.168.1.100 Samsung-Galaxy-S7 expired

A bit more information can be found in the system log (here the first 4 lines come when connecting and
the last line when the client leaves):

grep -E "hostapd|udhcpd" /var/log/messages

Oct 31 13:41:52 imx8mmea-ucom daemon.info hostapd: wlan1: STA

aa:5f:1b:40:22:ad IEEE 802.11: associated

Oct 31 13:41:52 imx8mmea-ucom daemon.info hostapd: wlan1: STA

aa:5f:1b:40:22:ad RADIUS: starting accounting session

7A3D9F4430B5BFA0

Oct 31 13:41:52 imx8mmea-ucom daemon.err udhcpd[3458]: sending

OFFER of 192.168.5.100

Oct 31 13:41:53 imx8mmea-ucom daemon.err udhcpd[3458]: sending ACK

to 192.168.5.100

Oct 31 13:46:03 imx8mmea-ucom daemon.info hostapd: wlan1: STA

ac:5f:3e:40:1e:ad IEEE 802.11: disassociated

One more way to get information about a connected client:

hostapd_cli all_sta

Selected interface 'wlan1'

aa:5f:1b:40:22:ad

flags=[AUTH][ASSOC][AUTHORIZED]

aid=0

capability=0x0

listen_interval=0

supported_rates=

timeout_next=NULLFUNC POLL

rx_packets=1015

tx_packets=193

rx_bytes=62988

tx_bytes=37595

inactive_msec=5000

connected_time=216

The last few lines give some statistics for the connection.

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 26

Copyright 2022 © Embedded Artists AB Rev A

3.8.4 Example - iperf3 on Android

In this example your phone/tablet must have iperf3 software (this example uses the free PingTools
Network Utilities app for Android,
https://play.google.com/store/apps/details?id=ua.com.streamsoft.pingtools).

Start the iperf3 server on the target:

iperf3 -s

Server listening on 5201

Start the app on the phone. It will look like this the first time:

Click the menu button in the top left corner and select the iPerf alternative. Enter 192.168.5.1 in the
address field and press start. The result will be presented after 5 seconds:

https://play.google.com/store/apps/details?id=ua.com.streamsoft.pingtools

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 27

Copyright 2022 © Embedded Artists AB Rev A

Press the start button again to rerun the test or click the menu in the top right corner and select
Settings to get a menu like this where you can select test duration and select to run in reverse mode:

The iperf3 server can be stopped with Ctrl+C on the target.

3.8.5 Where to go from here?

• Adding a web server to provide a user interface to the services running on the target. There
are several web servers available in yocto, each with their strengths and weaknesses. One
interesting feature is a "Captive Portal" which Wikipedia describes as

 a web page accessed with a web browser that is displayed to newly
 connected users of a Wi-Fi network before they are granted broader
 access to network resources.

There are several guides on how to setup a Captive Portal available on the Internet
depending on your choice of web server.

• Look into using iptables (available on the ea-image-base file system) to set up some firewall
rules to protect the system from malicious attacks.

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 28

Copyright 2022 © Embedded Artists AB Rev A

3.9 Bluetooth: keyboard

This chapter will show how to connect to a Bluetooth keyboard and how to automatically connect to it
after a reboot. Note that the keyboard will appear as an input device, and it will not actually work to
type in the terminal on the PC. The initialization is the same as explained in section 3.5 but will be
repeated for completeness.

Start by initializing Bluetooth (example is for 1XA):

/opt/ea/bluetooth_up.sh

bcm43xx_init

Set Controller UART speed to 3000000 bit/s

Flash firmware

/etc/firmware/BCM4359D0_004.001.016.0223.0231.1XA.sAnt.hcd

Set Controller UART speed to 3000000 bit/s

Setting TTY to N_HCI line discipline

Device setup complete

Scanning ...

To run a scan again, use hcitool scan

Use the interactive bluetoothctl command line tool to search for devices:

bluetoothctl

[bluetooth]# power on

[bluetooth]# agent on

[bluetooth]# scan on

Discovery started

[CHG] Controller 44:91:60:9A:7B:3D Discovering: yes

[NEW] Device 5B:09:CC:56:F9:2B 5B-09-CC-56-F9-2B

[NEW] Device 54:1B:BC:EF:AF:5B 54-1B-BC-EF-AF-5B

[CHG] Device 24:4B:03:74:42:FE Name: [TV] UE55JS8505

[NEW] Device 76:09:06:02:00:75 76-09-06-02-00-75

[CHG] Device 76:09:06:02:00:75 LegacyPairing: no

[CHG] Device 76:09:06:02:00:75 Name: Bluetooth 3.0 Keyboard

[CHG] Device 76:09:06:02:00:75 Alias: Bluetooth 3.0 Keyboard

[NEW] Device 5D:B3:02:D1:F9:FC 5D-B3-02-D1-F9-FC

[CHG] Device 76:09:06:02:00:75 LegacyPairing: yes

...

The device we are interested in is the 76:09:06:02:00:75 "Bluetooth 3.0 Keyboard". Pair with it:

[bluetooth]# pair 76:09:06:02:00:75

Attempting to pair with 76:09:06:02:00:75

[CHG] Device 76:09:06:02:00:75 Connected: yes

[agent] PIN code: 067627

In this case the keyboard sends a pass code "067627" that must be typed on the Bluetooth keyboard
followed by the Enter key in order to pair successfully. Check that the pairing was successful:

[bluetooth]# paired-devices

Device 76:09:06:02:00:75 Bluetooth 3.0 Keyboard

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 29

Copyright 2022 © Embedded Artists AB Rev A

To allow the device to establish the connection by itself it needs to be trusted:

[bluetooth]# trust 76:09:06:02:00:75

[CHG] Device 76:09:06:02:00:75 Trusted: yes

Changing 76:09:06:02:00:75 trust succeeded

As the last step connect to the keyboard:

[bluetooth]# connect 76:09:06:02:00:75

Attempting to connect to 76:09:06:02:00:75

[CHG] Device 76:09:06:02:00:75 Connected: yes

Connection successful

[CHG] Device 76:09:06:02:00:75 ServicesResolved: yes

[Bluetooth 3.0 Keyboard]#

Exit the tool:

[Bluetooth 3.0 Keyboard]# quit

To test the keyboard:

evtest

No device specified, trying to scan all of /dev/input/event*

Available devices:

/dev/input/event0: bd718xx-pwrkey

/dev/input/event1: Bluetooth 3.0 Keyboard

/dev/input/event2: Bluetooth 3.0 Keyboard Consumer Control

/dev/input/event3: Bluetooth 3.0 Keyboard System Control

Select the device event number [0-1]:

Type 1 and then Enter to start the tool. All key presses on the keyboard will be reported. End with
Ctrl+C.

The keyboard remains paired until that pairing is broken for example with the remove command in
bluetothctl. However, the Bluetooth controller will be turned off after a reboot.

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 30

Copyright 2022 © Embedded Artists AB Rev A

4 iMX Developer’s Kit Differences (V2 vs V3)
For most purposes there is very little difference between the V2 and V3 of iMX Developer’s Kits. The
table below lists the differences. The major differences are; V2 kits have an audio codec and more
advanced M.2 debug support. V3 kits support the new M.2 pin definition where pin 40 (instead of pin
66) is used to allow the host processor to wake the Wi-Fi chipset.

iMX Developer’s Kit V2 iMX Developer’s Kit V3

Datasheet and Schematic download:

https://www.embeddedartists.com/products/
com-carrier-board-v2/

Datasheet and Schematic download:

https://www.embeddedartists.com/products/
ucom-carrier-board/

Advanced debug features on M.2 interface
(described in more detail in section 4.2):

• VBAT control

• 3.3V VDDIO override

• Bluetooth UART interception

• Dual UART debug channels and JTAG

Audio codec and multiplexing

Standard debug features with current
measurement and JTAG signals acessible.

For more details, see section 4.1

On-board audio codec. No on-board audio codec.

M.2 pinning:

• M.2 pin 40 is JTAG_TDI

• M.2 pin 66 is used as WL_DEV_WAKE

Using pin 66 as WL_DEV_WAKE has been
depreciated and changed to pin 40 in an updated
pinning definition.

Both M.2 pins 40 and 66 can be used as
WL_DEV_WAKE, to support a smooth
transition of the M.2 pinning standard.

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 31

Copyright 2022 © Embedded Artists AB Rev A

4.1 uCOM Carrier Board (aka iMX Developer’s Kit V3) Features

The uCOM Carrier Board (used on iMX Developer’s Kits V3) is a reference implementation of the M.2
interface. This section describes the features of the design.

The picture below illustrates the main M.2 connector, J33, and related jumpers on the uCOM Carrier
Board.

Figure 1 – uCOM Carrier Board, M.2 E-Key Interface with Debug Features

The M.2 E-key interface has SDIO, USB, UART, I2S (audio), I2C and PCIe interfaces defined, and all
are connected. M.2 E-key modules mainly implements a Wi-Fi/BT or NFC interface. The connector
supports 2230-sized M.2 modules.

There are several features and functions of the M.2 E-key interface that has been added to be able to
do professional evaluation/benchmarking and debugging. These will be addressed in the following
subsections.

4.1.1 VBAT Powering

There is a separate 3.3V / 3A VBAT power supply that is dedicated to the M.2 interface. The default
output voltage is 3.3V but it is possible to change it to 3.6V by removing a resistor. Setting VBAT to
3.6V can improve radio performance on the M.2 module. Note that setting VBAT to 3.6V is outside of

VBAT Current Measurement, JP29
Measure current over a series resistor,
R236. Default value is zero ohm.

JP30, UART-C voltage control
1-2 pos (default): 3.3V
2-3 pos: 1.8V (for iMX7ULP uCOM)

JP31, Audio interface voltage control
1-2 pos: 1.8V (for iMX8M Mini/Nano uCOM)
2-3 pos: 3.3V (for iMX RT1166/1176 and
iMX7ULP uCOM)

Location where M.2
module is mounted

Wi-Fi/BT module
JTAG signals, JP33

JP21/JP22/JP23/JP24
1-2 pos (upper pos) connects
UART-C signals to M.2 E-key
interface

2-3 pos (lower pos) connects
UART-C signals to Mikrobus
interface connectors

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 32

Copyright 2022 © Embedded Artists AB Rev A

the M.2 specification, but if the radio chip/module on the M.2 module can handle VBAT set to 3.6V
then it can be an option to measure/evaluate the added performance.

4.1.2 VBAT Current Measurement

It is possible to measure the VBAT current to the M.2 module. JP29 is connected over series resistor
R236 that powers the M.2 connector, J33. Note that R236 is a zero-ohm resistor per default. To
measure the current, R236 must be replaced with a suitable resistor. Selecting a suitable value is a
trade-off between measurement resolution and voltage drop. It is recommended to keep the voltage
drop below 100mV. Also remember that there can be current spikes (up to about 1 Amp) during for
example startup calibration. A value between 50-100 milliohm can be a good starting point.

4.1.3 Bluetooth UART Voltage Level (UART-C)

The Bluetooth UART channel has different voltage levels on different uCOM boards. With jumper JP30
it is possible to select either 3.3V or 1.8V level:

• iMX8M Mini/Nano has 3.3V and this is the default setting (JP30 in 1-2 position).

• iMX7ULP has 1.8V (JP30 in 2-3 position).

4.1.4 Audio Signal Voltage Level

The audio interface has different voltage levels on different EAuCOM boards. With jumper JP31 it is
possible to select either 3.3V or 1.8V level:

• iMX8M Mini/Nano has 1.8V (JP31 in 1-2 position).

• iMX7ULP has 3.3V (JP31 in 2-3 position).

The audio source of the audio signals interface of the M.2 connector comes from the Bluetooth module
(on the mounted M.2 module). This audio interface connects to the audio interface of EAuCOM boards.
There is not audio codec on the uCOM Carrier Board. This can be added via the expansion connector.
A realistic use case is to either connect the audio interface signals directly to an audio codec or having
the EAuCOM board interface an audio codec.

4.1.5 JTAG Debug Channel

In collaboration with Murata, NXP, Infineon/Cypress and Embedded Artists several pins on the M.2
connector have been defined to carry JTAG signals to the chipset on the M.2 module. Note that not all
M.2 modules support this debug interface.

JP33 is a JTAG debug interface to the chipset on the M.2 module.

Note that using the JTAG debug interfaces requires understanding and access to the firmware.

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 33

Copyright 2022 © Embedded Artists AB Rev A

4.2 COM Carrier Board V2 Advanced Features

There are several advanced and unique features of the COM Carrier Board V2 that has been added to
be able to professional evaluation/benchmarking and debugging. This section describes these
features.

The picture below illustrates the different connectors and jumpers located on the lower left corner of
the COM Carrier Board V2.

Figure 6 – Lower Left Corner of COM Carrier Board V2

4.2.1 VBAT Current Measurement

It is possible to measure the VBAT current to the M.2 module exactly.

• Option #1, lift the short jumper (in 1-2 position) and use an external current meter to measure
the current exactly, with the resolution possible with the selected meter.
Note: make sure the current meter does not add a voltage drop more than 50-100mV
maximum.

VBAT Current Measurement, J24
Default: 1-2 pos.
2-3 pos. Measure current over
50milliOhm resistor over 1-3 pos.

J36, isolation jumpers
for Bluetooth UART
and control signals.

Indicator LEDs for
control signals.

Wi-Fi/BT module
JTAG connector, J28

FTDI cable
connectors,
Left to right:
J29: BT UART
J26: WL Debug
J23: BT Debug

Location where M.2
module is mounted

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 34

Copyright 2022 © Embedded Artists AB Rev A

• Option #2, move the short jumper to position 2-3. This will add a 50 milliOhm series resistor
and it is possible to measure the voltage over this series resistor on pos 1 and 3.

Do not forget to move the short jumper back to position 1-2 after a measurement session.

4.2.2 VBAT 3.3V or 3.6V

It is possible to set VBAT to either 3.3V or 3.6V during run time. This is controlled via a I2C mapped
GPIO. Setting VBAT to 3.6V can improve radio performance on the M.2 module. Note that setting
VBAT to 3.6V is outside of the M.2 specification, but if the radio chip/module on the M.2 module is
known to handle VBAT set to 3.6V then it can be an option to measure the added performance.

4.2.3 Support for 3.3V IO logic level (if M.2 module supports it)

The M.2 standard defines the IO voltage logic levels to a mixture of 1.8V and 3.3V. It is possible to set
the 1.8V logic signals to 3.3V logic level during run time. This is controlled via an I2C mapped GPIO.
Note that before doing this make sure the M.2 module used supports this feature. Not all of them do
this.

Also note that this control only affects the controls signals that have 1.8V logic level, not the SDIO bus.
The SDIO bus voltage level is controlled via other means.

4.2.4 Bluetooth UART Interception

It is possible to intercept/overtake the Bluetooth UART communication via connector J29. Insert a
UART-to-USB bridge cable from FTDI (TTL-232R-3V3) into J29 and use a PC application to
communicate directly with the Bluetooth part of the M.2 module.

Cypress has a tool called CyBluetool that can be used to debug Bluetooth communication problems.
The program and instructions on how to use it can be downloaded here:
https://community.cypress.com/docs/DOC-16475.

CyBluetool requires direct control of the UART, and this is normally controlled by Linux. The UART is
different for different COM boards:

COM boards Bluetooth UART Serial for u-boot
command

iMX6 SoloX COM /dev/ttymxc1 serial1

iMX6 Quad COM /dev/ttymxc4 serial4

iMX6 DualLite COM /dev/ttymxc4 serial4

iMX6 UltraLite COM /dev/ttymxc1 serial1

iMX7 Dual COM /dev/ttymxc1 serial1

iMX7 Dual uCOM /dev/ttymxc1 serial1

iMX7 ULP uCOM /dev/ttyLP2 serial2

iMX7 ULP uCOM with on-board 1LV Not externally accessible

iMX8M COM /dev/ttymxc1 serial1

iMX8M Mini uCOM /dev/ttymxc0 serial0

iMX8M Mini uCOM with on-board Wi-Fi/BT Not externally accessible

iMX8M Nano uCOM /dev/ttymxc0 serial0

https://community.cypress.com/docs/DOC-16475

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 35

Copyright 2022 © Embedded Artists AB Rev A

iMX8M Nano uCOM with on-board Wi-Fi/BT Not externally accessible

To disable that control:

1) Start the terminal program on the PC

2) Power on the board

3) Press space as soon as text appears in the terminal program to stop in the u-boot

4) Run this command:

=> setenv cmd_custom fdt set serial1 status disabled\;fdt set

/modem-reset status disabled

Note that this is one line and the => should not be typed.
The "serial1" part of the command is COM board specific. Replace with the correct one for
your board according to the table above.

5) Run this command to save the setting:

=> saveenv

6) Power off the board

7) Insert an FTDI cable in connector J29

8) Power On the board and let it boot into Linux

9) Now that Linux is no longer in control of the UART the reset signal must be manually
controlled. To enable Bluetooth, run the following commands to control BT_REG_ON:

echo 496 > /sys/class/gpio/export

echo high > /sys/class/gpio/gpio496/direction

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 36

Copyright 2022 © Embedded Artists AB Rev A

10) This step is only if you are using an i.MX6 Quad or i.MX6 DualLite COM board. These two
boards require the CTS signal to be pulled low:

echo 165 > /sys/class/gpio/export

echo low > /sys/class/gpio/gpio165/direction

11) Follow the instruction in the CyBluetool document.

The gpio commands are not persistent and must be executed again after a reboot. The U-boot
commands are however persistent and will disable the Linux access to the UART after each reboot. To
return to normal use of the UART stop in the u-boot and run these two commands:

=> setenv cmd_custom

=> saveenv

4.2.5 Dual UART Debug Channels and JTAG

In collaboration with Murata, NXP, Infineon/Cypress and Embedded Artists several pins on the M.2
connector have been defines to carry UART debug channels as well as JTAG signals to the chipset on
the M.2 module. Note that not all M.2 modules support all debug channels.

Connector J26 carries the Wi-Fi UART debug channel. Connect a UART-to-USB bridge cable from
FTDI (TTL-232R-3V3) into J26 and use a PC terminal application to get access to the debug interface.

Connector J23 carries the Bluetooth UART debug channel. Connect a UART-to-USB bridge cable from
FTDI (TTL-232R-3V3) into J26 and use a PC terminal application to get access to the debug interface.

J28 is a JTAG debug interface to the chipset on the M.2 module.

Note that using these debug interfaces typically requires understanding and access to the firmware

4.2.6 Audio Codec Multiplexing

Audio interface routing between i.MX processor on COM board, M.2 module and audio codec are three
corners in a triangle. With multiplexing, any corner can connect to any other corner. There are three
options, as listed below. Control is done in run time with two I2C mapped GPIOs.

• Option #1, connect M.2 module audio interface to audio codec on COM Carrier Board V2.

• Option #2, connect M.2 module audio interface to i.MX processor on the COM board.

• Option #3, connect audio interface from i.MX processor (on the COM board) to audio codec
on COM Carrier Board V2. This is the default when no M.2 module is used.

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 37

Copyright 2022 © Embedded Artists AB Rev A

5 Appendix - Software Update
The fastest way to get started is to download a prepared set of files for the COM board you are using
from http://imx.embeddedartists.com

Instructions on how to flash that software is available in the iMX Working with Yocto document.

This section is an abbreviated version of that document. The focus is to build for iMX8M Mini.

5.1 Linux Host Setup

5.1.1 Introduction

Follow the instructions in sections 3.1 to 3.3 in iMX Working with Yocto document to get the correct
packages installed on the host machine.

5.1.2 Download Yocto recipes

The Yocto project consists of many recipes used when building an image. These recipes come from
several repositories and the repo tool is used to download these repositories.

In step 3 below a branch must be selected of the ea-yocto-base repository. As of February 2022, the
branch with the most complete and updated support for M.2 modules is this one:

Branch name Description

ea-5.10.72 u-boot: 2021.04. Linux: 5.10.72.

Table 1 - ea-yocto-base branches

1. Create a directory for the downloaded files (ea-bsp in the example below)

$ mkdir ea-bsp

$ cd ea-bsp

2. Configure Git if you haven’t already done so. Change “Your name” to your actual name and
“Your e-mail” to your e-mail address.

$ git config --global user.name “Your name”

$ git config --global user.email “Your e-mail”

3. Initialize repo. The file containing all needed repositories is downloaded in this step. Change
<selected branch> to a branch name according to Table 1.

$ repo init -u https://github.com/embeddedartists/ea-yocto-base -b

<selected branch>

4. Start to download files

$ repo sync

All files have now been downloaded into the ea-bsp directory. Most of the files will be available in

the sub-directory called sources.

http://imx.embeddedartists.com/
https://www.embeddedartists.com/wp-content/uploads/2018/04/iMX_Working_with_Yocto.pdf
https://www.embeddedartists.com/wp-content/uploads/2018/04/iMX_Working_with_Yocto.pdf
https://github.com/embeddedartists/ea-yocto-base

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 38

Copyright 2022 © Embedded Artists AB Rev A

5.2 Building Images

Yocto is using the BitBake tool to generate complete Linux images/distributions, that is, all needed to
boot and run a Linux system. This is typically boot loader(s), Linux kernel, and root file system with
selected utilities and applications.

5.2.1 Available Images

The recipes that have been downloaded contain many different images. The table below describes the
ones relevant when working with the M.2 modules.

Image name Description

meta-toolchain Builds an installable toolchain (cross-complier)

ea-image-base
Based on core-image-base and added packages for peripheral
testing and verification

5.2.2 Machine Configurations

A machine configuration must be specified before a build can be started. For iMX8M Mini uCOM use
imx8mmea-ucom. For a complete list see section 4.2 in iMX Working with Yocto document.

5.2.3 Initialize Build

Before starting the build, it must be initialized. In this step the build directory and local configuration
files are created.

In the example below the machine imx8mmea-ucom, the build directory build_dir and the

fsl-imx-wayland distribution (see iMX Working with Yocto document for other distributions) is

selected.

$ DISTRO=fsl-imx-wayland MACHINE=imx8mmea-ucom source ea-setup-

release.sh -b build_dir

Restart a Build

If you need to restart a build in a new terminal window or after a restart of the host computer, you don’t
need to run the ea-setup-release.sh script again. Instead, you run the setup-

environment script. If you don’t run the setup-environment script you won’t have access

to needed tools and utilities, such as bitbake.

$ source setup-environment build_dir

5.2.4 Starting the Build

Everything has now been setup to start the actual build. The example below shows how the ea-

image-base image is being built. Please note that depending on the capabilities of your host

computer building an image can take many hours.

$ bitbake ea-image-base

When the build has finished the images will be available in the directory specified below. Please note
that this directory will be different if you are using another build directory or machine configuration.

~/ea-bsp/build_dir/tmp/deploy/images/imx8mmea-ucom.

Go to chapter 6 for instructions of how to deploy images to the target hardware.

https://www.embeddedartists.com/wp-content/uploads/2018/04/iMX_Working_with_Yocto.pdf
https://www.embeddedartists.com/wp-content/uploads/2018/04/iMX_Working_with_Yocto.pdf

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 39

Copyright 2022 © Embedded Artists AB Rev A

5.3 Building without Yocto

5.3.1 Stand-alone Toolchain

To be able to build your own application or, for example, u-boot and the Linux kernel outside of Yocto
you need a toolchain. The toolchain consists of cross-compiler, linker, and necessary libraries. As
mentioned in section 5.2.1 there is an image named meta-toolchain that will create the necessary
toolchain.

1. Build the image

$ bitbake meta-toolchain

2. The build will result in a file located at <build dir>/tmp/deploy/sdk. The exact

name of the file depends on the host computer and the target board, but in our example, it is
called:

fsl-imx-wayland-glibc-x86_64-meta-toolchain-cortexa53-crypto-

imx8mmea-ucom-toolchain-5.10-hardknott.sh

3. Install the toolchain

$ cd <build dir>/tmp/deploy/sdk

$ sudo ./fsl-imx-wayland-glibc-x86_64-meta-toolchain-cortexa53-

crypto-imx8mmea-ucom-toolchain-5.10-hardknott.sh

4. If you select the default settings the toolchain will in this example, be installed in /opt/fsl-
imx-wayland/5.10-hardknott

5. Before building an application run the command below to setup environment variables

$ source /opt/fsl-imx-wayland/5.10-hardknott/environment-setup-

cortexa53-crypto-poky-linux

6. You can verify that the environment variables have been correctly setup by running the
command below that will show the version of the GCC compiler used.

$ $CC --version

aarch64-poky-linux-gcc (GCC) 10.2.0

...

NOTE 1: Setting up environment variables in step 5 may overwrite other variables you
already have in your environment. It is, for example, not recommended to do this in the same
terminal where you run bitbake to build Yocto images.

It is recommended to build this toolchain on your host computer and for the processor that you are
going to use. Note that different processors are built on different cores and therefore require different
cross-compilers.

5.3.2 Build Linux kernel from source code

You can build the Linux kernel outside of Yocto by following the instructions in this section. Please note
that it is recommended that the kernel is built by Yocto when you are generating your final distribution
images since there can be dependencies between the root file system and the kernel.

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 40

Copyright 2022 © Embedded Artists AB Rev A

The instructions in this section assume that you have built and installed the toolchain as described in
section 5.3.1 above.

Setup the environment variables for the toolchain. We are using the same installation path as
described in section 5.3.1 above. If you have installed the toolchain in a different path, use that path in
the instructions below.

$ source /opt/fsl-imx-wayland/5.10-hardknott/environment-setup-

cortexa53-crypto-poky-linux

Get the source code from the Embedded Artists GitHub repository. In this example we are checking
out branch ea_5.10.72.

$ git clone https://github.com/embeddedartists/linux-imx.git

$ cd linux-imx

$ git checkout ea_5.10.72

Use Embedded Artists kernel configurations. The command below is for the i.MX8 boards only. Use
ea_imx_defconfig instead if you are compiling for i.MX6 or i.MX7.

$ make ea_imx8_defconfig

(Optional) If you want to change kernel configurations you can at this point run the menuconfig tool.

$ make menuconfig

Build the kernel.

$ make

When the build process has finished the kernel will be available here:

arch/arm/boot/zImage - for iMX6 and iMX7 boards

arch/arm64/boot/Image - for iMX8 boards

Device tree files are available in the following directory:

arch/arm/boot/dts/ - for iMX6 and iMX7 boards

arch/arm64/boot/dts/freescale/ - for iMX8 boards

A compiled device tree file has the file extension dtb.

Updating the system

To update the system use manufacturing tool as described in 6 . For alternative ways of updating see
the iMX Working with Yocto document.

https://github.com/embeddedartists/linux-imx.git
https://www.embeddedartists.com/wp-content/uploads/2018/04/iMX_Working_with_Yocto.pdf

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 41

Copyright 2022 © Embedded Artists AB Rev A

5.3.3 Build u-boot from source code

Building the u-boot for i.MX8 outside of Yocto is of course possible but requires a lot of steps and
different git repositories to be cloned. The process is described in section 10.3 and 10.3.1 in iMX
Working with Yocto document.

https://www.embeddedartists.com/wp-content/uploads/2018/04/iMX_Working_with_Yocto.pdf
https://www.embeddedartists.com/wp-content/uploads/2018/04/iMX_Working_with_Yocto.pdf

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 42

Copyright 2022 © Embedded Artists AB Rev A

6 Appendix - Deploying Images
UUU (Universal Update Utility) can be used to write images to the board, i.e., a new Linux kernel
and/or file system. This tool is sending files and instructions over USB and the board must be
powered-up in OTG boot mode for it to work.

Instructions for using UUU is explained in section 5.2 of iMX Working with Yocto document.

UUU is version 3 of MFGTool (NXP's Manufacturing Tool) but it has been rewritten, is publicly
available on GitHub (https://github.com/NXPmicro/mfgtools) and it can be run on both Windows and
Linux while the older versions of MFGTool were limited to Windows only.

Prerequisites:

• Ubuntu 16.04 or above, 64-bit

• Windows 10, 64-bit

• Windows 7, 64-bit - note that there might be problems with drivers and that it might not even
work with the driver fixes applied even if the documentation says it does. The Windows 7
specific instructions can be found here: https://github.com/NXPmicro/mfgtools/wiki/WIN7-
User-Guide

Useful links:

• UUU on GitHub: https://github.com/NXPmicro/mfgtools

• UUU release page: https://github.com/NXPmicro/mfgtools/releases

6.1 Download the Tool

Download the zip file for the board you are using from http://imx.embeddedartists.com/

Unpack this zip file somewhere on your computer. Below is a description of some of the content in the
zip file.

• uuu (root): Contains a README file.

• uuu/uuu.exe: The Windows version of the tool

• uuu/*.uuu: The different download configurations.

• uuu/files/: Contains pre-compiled versions of images. The tool will look in this directory

when selecting images to download to the board.

The UUU zip file includes the Windows version of tool itself (i.e., uuu.exe). The README file contains
a link to where the latest binaries can be downloaded (https://github.com/NXPmicro/mfgtools/releases).
Download either uuu.exe (for Windows) or UUU for Linux and save the file in the same folder as the
README file.

6.2 Prepare hardware

Begin by reading the Getting Started document for the board you are using. It shows how to setup the
board and gives an overview of the hardware.

https://www.embeddedartists.com/wp-content/uploads/2018/04/iMX_Working_with_Yocto.pdf
https://github.com/NXPmicro/mfgtools
https://github.com/NXPmicro/mfgtools/wiki/WIN7-User-Guide
https://github.com/NXPmicro/mfgtools/wiki/WIN7-User-Guide
https://github.com/NXPmicro/mfgtools
https://github.com/NXPmicro/mfgtools/releases
http://imx.embeddedartists.com/
https://github.com/NXPmicro/mfgtools/releases

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 43

Copyright 2022 © Embedded Artists AB Rev A

6.3 uCOM Carrier Board (iMX Developer’s Kit V3): OTG boot mode – JP12 Jumper

To download images using UUU the board must be put into OTG boot mode.

This is accomplished by closing the JP12 jumper on the uCOM Carrier board; see Figure 8 to locate
the jumper. It is the red circle around the “8”. Insert/close the jumper in JP12 to place the board in OTG
boot mode.

Figure 7 – JP12 jumper (opened state) on a uCOM Carrier Board (iMX Developer’s Kit V3)

Note: When you want to boot the software from eMMC again remove jumper JP12.

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 44

Copyright 2022 © Embedded Artists AB Rev A

6.4 COM Carrier Board (iMX Developer’s Kit V2): OTG boot mode – J2 Jumper

To download images using UUU the board must be put into OTG boot mode.

This is accomplished by closing the J2 jumper on the COM Carrier board; see Figure 8 to locate the
jumper. Please note that in the figure the jumper is in open state which means that the COM board will
boot from eMMC.

Figure 8 - J2 jumper (opened state) on a COM Carrier Board V2

Note: When you want to boot the software from eMMC remove jumper J2.

6.5 Configurations

Several configurations (*.uuu files) for the tool have been prepared in order to help you download
specific images.

• bootloader.uuu – will install only the bootloaders. This should only be used if you want

to restore the bootloaders or download your own bootloaders to the board.

• bootloader_combined.uuu – will install only the bootloaders. This is a faster

alternative to bootloader.uuu but it requires a binary where SPL and the u-boot have been
combined (see below). This should only be used if you want to restore the bootloaders or
download your own bootloaders to the board.

• kernel.uuu – will install kernel and dtb files. This should only be used if you want to

update the kernel or dtb files.

• full_tar.uuu – will install bootloaders, Linux kernel and root file system. The root file

system will be installed from a tar.bz2 file.

• raw_sdcard_example.uuu – will overwrite the eMMC with the content of an sdcard

file. The sdcard file is copied directly to the eMMC overwriting everything including
bootloaders, Linux kernel and file system.

If you want to create the combined binary to use with bootloader_combined.uuu run the following
commands in Linux:

$ dd if=SPL of=spl_and_uboot.bin bs=1024

$ dd if=u-boot.img of=spl_and_uboot.bin bs=1024 seek=68

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 45

Copyright 2022 © Embedded Artists AB Rev A

6.6 Download Your Own Images

The UUU zip file that you download from http://imx.embeddedartists.com/ contain the latest build from
Embedded Artists.

The simplest way to download your own images is to replace the existing file(s) with your own file(s). If
you keep the file names intact the *.uuu configurations will download your version of the file.

6.7 Run the Tool in Ubuntu

On Linux open a terminal, navigate to the folder where the UUU zip file was unpacked, make sure that
the tool is executable and then execute the tool:

$ cd ~/uuu_imx8mq_com_5.10.72

$ chmod +x ./uuu

$ sudo ./uuu full_tar.uuu

The terminal will show a progress bar like this while it is running:

After a successful run it will look like this:

If a problem occurs, then the program will terminate and print an error message like this

6.8 Run the Tool in Windows

On Windows open a Command Prompt, navigate to the folder where the UUU zip file was unpacked
and then run the tool:

C:\> cd c:\temp\uuu_imx8mq_com_5.10.72

C:\temp\uuu_imx8mq_com_5.10.72> uuu.exe full_tar.uuu

The terminal will show a progress bar like this while it is running:

http://imx.embeddedartists.com/

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 46

Copyright 2022 © Embedded Artists AB Rev A

After a successful run it will look like this:

If a problem occurs, then the program will terminate and print an error message like this

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 47

Copyright 2022 © Embedded Artists AB Rev A

6.9 Troubleshoot

Some common problems and solutions:

• The first time you run UUU on your computer it fails.
This is likely because of USB driver installation. Let the driver install, reset the hardware and
then run the UUU command again. In Windows it is three different drivers that are needed so
this procedure might have to be repeated three times - each time the procedure gets a little bit
further.

• UUU appears to hang with a "Wait for Known USB Device Appear..." message like this:

This means that the hardware is either not connected to the computer with the USB cable or it
is not in the OTG boot mode. Check the jumper, power off and then power on again and then
run the UUU command again.

• Windows 7 fail to flash with an error like this:

It could be due to a driver problem. Follow instructions here:
https://github.com/NXPmicro/mfgtools/wiki/WIN7-User-Guide

• Windows 7 terminal does not appear as in the screenshots
This is because Windows 7 does not support what the UUU tool calls "VT mode" so it defaults
to verbose mode which has a lot more printouts and no progress bar.

• Running raw_sdcard_example.uuu complains about a missing .sdcard file
That file is not supplied in the downloaded zip file but you will find it in the "deploy" folder after
you complete your own yocto build.

• UUU in Ubuntu reports failure to open usb device:

This happens if the UUU program is not executed with the correct rights. Either use "sudo
uuu" or setup udev rules so that sudo rights are not needed. The instructions for how to

https://github.com/NXPmicro/mfgtools/wiki/WIN7-User-Guide

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 48

Copyright 2022 © Embedded Artists AB Rev A

create the udev rules are built into the tool so run "uuu -udev" and then follow the steps:

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 49

Copyright 2022 © Embedded Artists AB Rev A

7 Appendix - Updating Files on Target
There are four parts that make up a running system: u-boot, Linux kernel, device tree files and a root
file system. The u-boot and root file system must be flashed using MfgTool/UUU as described in
chapter 6 . The Linux kernel and the device tree files are however much easier to update, and this
appendix will show a couple of different ways to do this.

• U-boot USB Mass Storage Gadget - Quick, no extra software or network connection needed

• Secure Copy From Target - Requires network but no extra software

• Secure Copy To Target - Requires network and PC software. Target must be modified to
allow incoming connection. The advantage is an application with a GUI.

• USB memory stick - Only requires a Memory Stick but using it involves a lot of
plugging/copying/unplugging

Note that the sections below focus on updating the Linux kernel and device tree files but the same
commands can be used to update any file on the target.

7.1 U-boot USB Mass Storage Gadget

The u-boot has an ums command that can export an mmc device as a USB Mass Storage making it

accessible from a PC. The mmc device numbering is different for each board and changes with
versions of the u-boot so the table below shows the command to use for version 2021.04.

COM board Command

iMX6 SoloX COM ums 0 mmc 2

iMX6 Quad COM ums 0 mmc 3

iMX6 DualLite COM ums 0 mmc 3

iMX6 UltraLite COM ums 0 mmc 1

iMX7 Dual COM ums 0 mmc 2

iMX7 Dual uCOM ums 0 mmc 2

iMX7ULP uCOM ums 0 mmc 0

iMX8M Quad COM ums 0 mmc 0

iMX8M Mini uCOM ums 0 mmc 2

iMX8M Nano uCOM ums 0 mmc 2

To use the ums command, power on, stop in the u-boot, connect the micro-USB cable in J11 (on a V2

COM Carrier Board) or J26 (on a V3 uCOM Carrier Board) and to the PC and then execute the
command for your board. For iMX8M Mini uCOM it will look like this:

=> ums 0 mmc 2

UMS: LUN 0, dev 0, hwpart 0, sector 0x0, count 0x72c000

/

There will be a spinning character indicating that the command is running. After a few seconds the PC
should detect the USB drive(s) and make them available.

The number of drives that appear and if they can be accessed, or not, depends on the operating
system. Windows and Linux are both able to access the first drive as it is FAT formatted. It

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 50

Copyright 2022 © Embedded Artists AB Rev A

corresponds to the mmc partition with the Linux kernel and device tree files on it. As Linux has
ext3/ext4 file system support it can also access the second drive which corresponds to the root file
system of the target.

Add/remove files on the PC and then use the "safe unmounting" option in Windows/Linux to make sure
all changes have been written. Finally stop the ums command in the u-boot by typing Ctrl+C in the
terminal.

=> ums 0 mmc 2

UMS: LUN 0, dev 0, hwpart 0, sector 0x0, count 0x72c000

CTRL+C - Operation aborted

=>

Some things to note

• The u-boot is single threaded so the transfer speed of files to/from the USB drive is quite low.
That does not matter when updating the Linux kernel and/or device tree files but for large files
it is probably quicker to boot into Linux first (and do the file transfer from there).

• When accessing the root file system from a PC running Linux you may have to run the
commands as root (for example using sudo) as all files are owned by root.

• The ums support was first verified on the ea_v2018.03 branch of the u-boot and connected to
a PC running Windows 7, Windows 10 and Ubuntu 18.04.

7.2 Secure Copy from Target

The default file system on all iMX Developer's Kits come with the scp tool preinstalled. If the target is

connected to the same network as you build computer and the build computer has an ssh server
running then scp can be used to transfer files from the build server.

The first step is to mount the mmc partition that holds the Linux kernel and device tree files. The mmc
device numbering is different for each board so the table below shows the command to use.

COM board eMMC device in Linux Command

iMX6 SoloX COM /dev/mmcblk2 mount /dev/mmcblk2p1 /mnt/mmc

iMX6 Quad COM /dev/mmcblk3 mount /dev/mmcblk3p1 /mnt/mmc

iMX6 DualLite COM /dev/mmcblk3 mount /dev/mmcblk3p1 /mnt/mmc

iMX6 UltraLite COM /dev/mmcblk1 mount /dev/mmcblk1p1 /mnt/mmc

iMX7 Dual COM /dev/mmcblk2 mount /dev/mmcblk2p1 /mnt/mmc

iMX7 Dual uCOM /dev/mmcblk2 mount /dev/mmcblk2p1 /mnt/mmc

iMX7ULP uCOM /dev/mmcblk0 mount /dev/mmcblk0p1 /mnt/mmc

iMX8M Quad COM /dev/mmcblk0 mount /dev/mmcblk0p1 /mnt/mmc

iMX8M Mini uCOM /dev/mmcblk2 mount /dev/mmcblk2p1 /mnt/mmc

iMX8M Nano uCOM /dev/mmcblk2 mount /dev/mmcblk2p1 /mnt/mmc

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 51

Copyright 2022 © Embedded Artists AB Rev A

Using iMX8M Mini uCOM as an example:

mkdir /mnt/mmc

mount /dev/mmcblk2p1 /mnt/mmc

ls /mnt/mmc/

Image

boot.scr

cm_TCM_hello_world.bin

cm_TCM_rpmsg_lite_pingpong_rtos_linux_remote.bin

cm_TCM_rpmsg_lite_str_echo_rtos.bin

imx8mm-ea-ucom-kit_v2-1mw.dtb

imx8mm-ea-ucom-kit_v2-m4.dtb

imx8mm-ea-ucom-kit_v2-ov5640.dtb

imx8mm-ea-ucom-kit_v2-pcie.dtb

imx8mm-ea-ucom-kit_v2.dtb

imx8mm-ea-ucom-kit_v3-1mw.dtb

imx8mm-ea-ucom-kit_v3-m4.dtb

imx8mm-ea-ucom-kit_v3-ov5640.dtb

imx8mm-ea-ucom-kit_v3-pcie.dtb

imx8mm-ea-ucom-kit_v3.dtb

The scp command looks like this:

scp <username>@<server>:<path> <destination>

To copy the kernel from server with IP address 192.168.0.10 as user bob it could look like this:

scp bob@192.168.0.10:/home/bob/linux-imx/arch/arm64/boot/Image /mnt/mmc/

After copying the files from the build server make sure to unmount the mmc partition before rebooting:

unmount /mnt/mmc

7.3 Secure Copy To Target - WinSCP

WinSCP is a Windows program that is very useful to transfer files from the PC to the target hardware.
It can also be used to transfer the files from a yocto build to the PC where the files can be flashed
using UUU as described in section 6 .

7.3.1 Download and Install

Download the program from https://winscp.net/eng/download.php and install it.

mailto:bob@192.168.0.10:/home/bob/linux-imx/arch/arm64/boot/Image
https://winscp.net/eng/download.php

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 52

Copyright 2022 © Embedded Artists AB Rev A

7.3.2 Connect to Target

When WinSCP is started it asks for connection information. Enter the following information

Field Value

User name Root

Password Pass

Host name The IP number of the target (found by running "ifconfig" on the target)

File protocol SCP or SFTP

Press the Login button to connect to the target.

The first time connecting to the target (or after a re-flash of the target) this dialog will appear:

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 53

Copyright 2022 © Embedded Artists AB Rev A

Press the Yes button to accept it.

If you get a dialog liked the one below asking for the password and you are sure that you have entered
the correct one (pass) then it is probably because the target is configured not to allow the root user to
connect.

Allowing root access is a huge security threat and it should never be allowed in a production system.
To allow it during development in a controlled environment is ok and to do it run the following
command on the target and then reboot to apply the change:

sed -i 's/#PermitRoot/PermitRoot/' /etc/ssh/sshd_config

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 54

Copyright 2022 © Embedded Artists AB Rev A

If you prefer to edit the file manually then open /etc/ssh/sshd_config and search for

#PermitRootLogin yes

and then remove the preceding # sign.

Note that the command is persistent but needs to be executed again if you re-flash the file system.

7.3.3 Copy Files

This is what the program looks like after a successful login:

Select a file in the left side (the PC), select a destination folder on the target (right side) and then click
the Upload button to transfer the file.

Note that to copy files directly to the mmc partition, use the mount and unmount commands as

described in section 7.2 above. You will then find the mounted partition under the mnt/mmc/ folder in
WinSCP.

 Getting Started with M.2 Modules and i.MX 6/7/8 on Linux v5.10 Page 55

Copyright 2022 © Embedded Artists AB Rev A

7.4 USB Memory Stick

If the build machine is not accessible over network, then copying the files on the build server onto a
USB Memory Stick could be an option.

When the USB Memory Stick is inserted on the target some status messages will be printed in the
console.

usb 1-1.3: new high-speed USB device number 5 using ci_hdrc

usb-storage 1-1.3:1.0: USB Mass Storage device detected

scsi1 : usb-storage 1-1.3:1.0

scsi 1:0:0:0: Direct-Access Kingston DataTraveler G2 1.00 PQ:

0 ANSI: 2

sd 1:0:0:0: [sda] 31252024 512-byte logical blocks: (16.0 GB/14.9

GiB)

sd 1:0:0:0: [sda] Write Protect is off

sd 1:0:0:0: [sda] Incomplete mode parameter data

sd 1:0:0:0: [sda] Assuming drive cache: write through

sd 1:0:0:0: [sda] Incomplete mode parameter data

sd 1:0:0:0: [sda] Assuming drive cache: write through

 sda: sda1

sd 1:0:0:0: [sda] Incomplete mode parameter data

sd 1:0:0:0: [sda] Assuming drive cache: write through

sd 1:0:0:0: [sda] Attached SCSI removable disk

The interesting part above is the “sda: sda1” which indicates which device (sda1) that the USB

memory stick is assigned to.

To be able to access the memory stick it must first be mounted:

mkdir /mnt/usb

mount /dev/sda1 /mnt/usb

The memory stick is now available in the /mnt/usb directory on the file system:

ls /mnt/usb/

ea-image-base-imx8mmea-ucom.tar.bz2

Image-imx8mmea-ucom.bin

imx8mm-ea-ucom-kit_v3.dtb

imx-boot-imx8mmea-ucom-sd.bin

If the mmc partition has been mounted as described in section 7.2 above, then files can be copied from
the directory to the mmc partition like this:

cp /mnt/usb/imx8mm-ea-ucom-kit_v3.dtb /mnt/mmc/

Make sure to unmount the mmc after completing the copying.

Before physically removing the memory stick from the COM Carrier Board, it should be unmounted to
make sure that all pending write operations are committed to prevent data loss:

umount /mnt/usb

