

 iMX RT Developer’s Kit - Program Dev. Guide

Copyright 2021 © Embedded Artists AB

iMX RT Developer’s Kit
Program Development Guide

Get Up-and-Running Quickly and
Start Developing Your Application on Day 1!

iMX RT Developer’s Kit - Program Development Guide Page 2

Copyright 2021 © Embedded Artists AB

Embedded Artists AB
Rundelsgatan 14
211 36 Malmö
Sweden

https://www.EmbeddedArtists.com

Copyright 2021 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual, or otherwise, without the prior written permission of Embedded Artists
AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and
specifically disclaim any implied warranties or merchantability or fitness for any particular purpose.
Information in this publication is subject to change without notice and does not represent a commitment on
the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements on this document. Please send your
comments to support@EmbeddedArtists.com.

Trademarks

All brand and product names mentioned herein are trademarks, services marks, registered trademarks, or
registered service marks of their respective owners and should be treated as such.

https://www.embeddedartists.com/
mailto:support@EmbeddedArtists.com

iMX RT Developer’s Kit - Program Development Guide Page 3

Copyright 2021 © Embedded Artists AB

Table of Contents
1 Document Revision History 5

2 Get Started with Program Development 6

2.1 Downloading the SDK 6

2.2 About the SDK 7

2.3 Preparing the Hardware 7

2.4 Getting Started with a Specific IDE 7

3 Getting Started with Keil uVision/MDK 9

3.1 Install the SDK 9

3.2 Install CMSIS Device Pack 9

3.3 Build an Example Application 10

3.4 Run an Example Application 11

4 Getting Started with IAR Embedded Workbench 13

4.1 Install the SDK 13

4.2 Build an Example Application 13

4.3 Run an Example Application 14

5 Getting Started with NXP MCUXpresso IDE 16

5.1 Install the SDK 16

5.2 Build an Example Application 16

5.3 Run an Example Application 18

5.4 Target Memory 19

5.5 Troubleshooting 23

6 Debug Interface 24

6.1 J-LINK/J-TRACE Support 24

6.1.1 Install J-LINK Software 24

6.1.2 MCUXpresso 24

6.1.3 Keil uVision 25

7 Standalone Program Download 27

7.1 Install the Required Software 27

7.2 Prepare the Program to Flash 27

7.3 Booting an Unsigned Image 28

7.4 Booting an Authenticated or Encrypted Image 30

8 Terminal Application Setup 31

8.1 UART-to-USB Bridge 31

8.2 Terminal Application on the PC 31

8.2.1 Tera Term Terminal Emulation Application 32

8.2.2 PuTTY terminal emulation application 33

iMX RT Developer’s Kit - Program Development Guide Page 4

Copyright 2021 © Embedded Artists AB

9 Booting from External Memory 35

10 Troubleshooting 38

10.1 Cannot debug / download 38

11 Things to Note 40

11.1 ESD Precaution 40

11.2 General Handling Care 40

11.3 OTP Fuse Programming 40

12 Disclaimers 41

12.1 Definition of Document Status 42

iMX RT Developer’s Kit - Program Development Guide Page 5

Copyright 2021 © Embedded Artists AB

1 Document Revision History

Revision Date Description

PA1 2020-03-03 First release

PA2 2021-03-07 Moved troubleshooting section

PA3 2021-12-02 Updated Standalone Program Download section. Minor version
updates.

iMX RT Developer’s Kit - Program Development Guide Page 6

Copyright 2021 © Embedded Artists AB

2 Get Started with Program Development
This chapter contains information about how to get started with program development on the iMX RT
Developer’s Kit. The document covers the following kits:

Note that the iMX RT1052/RT1062 OEM Developer’s Kit is not covered in this document. There is a
separate document for that kit.

Most of the examples in this document refer to the iMX RT1176 Developer’s Kit (and associated iMX
RT1176 uCOM board). For other kits/MCUs, the paths and names may change slightly but it will be obvious
where the changes are.

To start program development, you need the following things, all of them:

1. Patched version of MCUXpresso SDK - this is a package of sample software from NXP that has
been patched by Embedded Artists to work with the iMX RT Developer’s Kit. The zip-file can be
downloaded from http://imx.embeddedartists.com.

2. Integrated Development Environment (IDE)

a. NXP MCUXpresso, Keil uVision/MDK and IAR Embedded Workbench. Update to
latest version of respective IDE.

b. Programming of the flash is also supported via NXP's MCUXpresso Secure Provisioning
Tools standalone application, but it is not a suitable tool to use during program
development.

3. JTAG probe to be able to download the application to SRAM, SDRAM or the flash memory and in
general to be able to debug - set breakpoints, inspect memory, etc.

a. The low-cost MCU-Link (Pro) or LPC-Link2 are excellent choices. Keil ULINK2 and
ULINKplus, as well as Segger JLINK, are also excellent debug probes.

b. Technically it is possible to program/flash without a JTAG probe (via NXP's MCUXpresso
Secure Provisioning Tools application), but it is strongly recommended to use the proper
tool for debugging - i.e., use a JTAG probe!

4. And of course, the iMX RT Developer's Kit!

2.1 Downloading the SDK

Starting with SDK version 2.8.6 and going forward, Embedded Artists has published a version of the SDK
that has already been patched to work with the iMX RT Developer’s Kit. The file can be downloaded from
http://imx.embeddedartists.com and will have a filename like

ea<mcu>_sdk_<version>_<date>.zip

Kit (and MCU)

iMX RT1064 Developer’s Kit

iMX RT1166 Developer’s Kit

iMX RT1176 Developer’s Kit

http://imx.embeddedartists.com/
http://imx.embeddedartists.com/

iMX RT Developer’s Kit - Program Development Guide Page 7

Copyright 2021 © Embedded Artists AB

2.2 About the SDK

NXP’s SDK builder (https://mcuxpresso.nxp.com/en/) was used to generate an SDK.

Depending on which options are selected it limits the number of examples that can be downloaded. The
SDK with the broadest set of examples is the Windows/All IDEs/All Examples and that is the combination
that was selected for the patched SDK. SDK builder for 2.8.6 forced a choice between FreeRTOS or Azure
RTOS and in that case FreeRTOS was selected. Starting with 2.9.0 the SDKs have support for both
operating systems.

In general, this is what has been patched (see the release notes for more detail):

• The memory configuration (e.g., size of SDRAM) is changed to match the iMX RT Developer’s Kit

• The flash configuration (e.g., size/model/make) is changed to match the iMX RT Developer’s Kit.
This includes changes to selected flash algorithms and flash headers

• Use of I2C busses, UARTs and pinning is changed where needed

• Buttons and LEDs are remapped to work on the iMX RT Developer’s Kit

• Drivers for peripherals unique to the iMX RT Developer’s Kit are added. This includes for example

o GPIO Expander PCA6416

o PWM Expander PCA9530

o EEPROM for MAC address

• LWIP projects are modified to read the MAC address

This has been added:

• Wi-Fi/Bluetooth support is extended to support a larger selection of Embedded Artists’ M.2 wireless
modules.

• HDMI display support is added if it can be supported by the MCU

• Parallel RGB display support is added if it can be supported by the MCU

This has been removed:

• All projects for the expansion board AGM01

2.3 Preparing the Hardware

Please follow the instructions on the getting started page for the iMX RT Developer's Kit to power the board
and connect to the console (UART-to-USB bridge).

https://www.embeddedartists.com/getting-started-with-ucom-developers-kit/

2.4 Getting Started with a Specific IDE

The following chapters will describe how to get started with a number of different IDEs.

Chapter 3 describes Keil uVision/MDK.

Chapter 4 describes IAR Embedded Workbench.

Chapter 5 describes NXP MCUXpresso.

https://mcuxpresso.nxp.com/en/
https://www.embeddedartists.com/getting-started-with-ucom-developers-kit/

iMX RT Developer’s Kit - Program Development Guide Page 8

Copyright 2021 © Embedded Artists AB

iMX RT Developer’s Kit - Program Development Guide Page 9

Copyright 2021 © Embedded Artists AB

3 Getting Started with Keil uVision/MDK
This section is a guide to open, build and debug an example application from the SDK that was downloaded
in 2.1 using Keil uVision/MDK. It is assumed that you have this development environment installed on your
computer.

3.1 Install the SDK

Unpack the SDK zip file that was downloaded in 2.1 somewhere on the local file system. It is suggested to
use a very short path as the SDK has a deep folder structure and a too long path can cause problem in
Windows.

The folder that the SDK is unpacked into will be referred to as <install_dir> in the following

sections.

3.2 Install CMSIS Device Pack

After the MDK tools are installed, Cortex Microcontroller Software Interface Standard (CMSIS) device packs
must be installed to fully support the device from a debug perspective. These packs include things such as
memory map information, register definitions and flash programming algorithms.

In most cases, if you open one of the projects from the unpacked SDK in Keil uVision, it will detect if the
CMSIS pack is needed and ask if it should be downloaded/installed. Accept it and let it be installed.

Note that this could take a long time (~20 minutes) but it is a onetime operation so don’t abort and
let it complete.

In the rare cases where Keil uVision cannot detect the package automatically for you, follow these steps to
install the CMSIS pack manually.

1. Start Keil uVision

2. Start the Pack Installer tool with this button on the toolbar:

3. Browse to the device tree to the left and locate the device (for example
NXP→MIMXRT1176→MIMXRT1176xxxxx or similar for other MCUs) and then locate the package
in the right side with a _DFP in the name and click the Install button next to it. Note that the button
in the image below has "Update" as the package has already been installed.

4. Note that this operation can take a very long time to complete (~20 minutes) so don’t abort if it
looks like the installer has frozen.

iMX RT Developer’s Kit - Program Development Guide Page 10

Copyright 2021 © Embedded Artists AB

3.3 Build an Example Application

The following steps will guide you through opening the hello_world application for the Cortex-M7 core of the
iMX RT1176. These steps may change slightly for other MCUs and other example applications as some of
these applications may have additional layers of folders in their path. Note that the Keil uVision workspace
files are always placed in subfolders named mdk/ so look for that.

1. Open the desired example application either by double clicking the .uvmpw file in the explorer or by
starting Keil uVision and selecting Project->Open Project… from the menu. The hello world
example has this path:

<install_dir>boards/evkmimxrt1170/demo_apps/hello_world/cm7/

mdk/hello_world_demo_cm7.uvmpw

2. Customize the project. For projects using a display this includes selecting which display to use, for
networking projects it may include setting the IP number/netmask, for Wi-Fi projects it includes
selecting which M.2 module to use and which Wi-Fi network to connect to.

These settings are handled differently for different SDK versions and different MCUs so consult the
readme.txt file available in the docs/ folder of each example for information.

3. Select the desired build target from the drop-down.
For this example, select the “debug” target.

The target name indicates from where the application is executing, see table below. Release
targets have a higher compiler optimization degree making the target less suitable for debugging.
Available targets differ from example to example but here are some of the more common ones.

<project> sdram_debug
<project> sdram_release

The application runs in internal SRAM but with
data in external SDRAM

<project> sdram_txt_debug
<project> sdram_txt_release

The application runs in external SDRAM but with
data in internal SRAM

<project> debug
<project> release

The application runs in internal SRAM

<project> flexspi_nor_debug
<project> flexspi_nor_release

The application runs in external flash, which must
be programmed before use.

<project> flexspi_nor_sdram_debug
<project> flexspi_nor_sdram_release

The application runs in external flash and use
SDRAM. The external flash must be programmed
before use.

Note that each of the targets have its own set of options so changing for example include path in

iMX RT Developer’s Kit - Program Development Guide Page 11

Copyright 2021 © Embedded Artists AB

one target does not affect the other targets.

4. To build the demo project, select the "Rebuild" button, highlighted in red.

5. The build will complete without errors.

3.4 Run an Example Application

To download and run the application, perform these steps:

1. Prepare the hardware as described in chapter 2.3 and power it on.

2. Open the terminal application on the PC, such as TeraTerm or PuTTY, and connect to the virtual
COM port. Configure the terminal with 115200 baud, 8N1.
You can alter the baud rate by searching for the BOARD_DEBUG_UART_BAUDRATE define in
file: board.h

3. Select the Debug menu and then Start/Stop Debug Session, or simply press Ctrl+F5.
The application will then be downloaded into SRAM.

4. Run the code by clicking the “Run” button (or tress F5) to start the application.

iMX RT Developer’s Kit - Program Development Guide Page 12

Copyright 2021 © Embedded Artists AB

5. The hello_world application is now running, and a banner is displayed on the terminal. If this is not
true, check your terminal settings and connections.

iMX RT Developer’s Kit - Program Development Guide Page 13

Copyright 2021 © Embedded Artists AB

4 Getting Started with IAR Embedded Workbench
This section is a guide to open, build and debug an example application from the SDK that was downloaded
in 2.1 using IAR Embedded Workbench. It is assumed that you have this development environment
installed on your computer.

4.1 Install the SDK

Unpack the SDK zip file that was downloaded in 2.1 somewhere on the local file system. It is suggested to
use a very short path as the SDK has a deep folder structure and a too long path can cause problem in
Windows.

The folder that the SDK is unpacked into will be referred to as <install_dir> in the following

sections.

4.2 Build an Example Application

The following steps will guide you through opening the hello_world application for the Cortex-M7 core of the
iMX RT1176. These steps may change slightly for other example applications as some of these applications
may have additional layers of folders in their path. Note that the IAR Embedded Workbench workspace files
are always placed in subfolders named iar/ so look for that.

1. Open the desired example application either by double clicking the .eww file in the explorer or by
starting IAR Embedded Workbench and selecting File->Open Workspace… from the menu. The
hello world example has this path:

<install_dir>boards/evkmimxrt1170/demo_apps/hello_world/cm7/

iar/hello_world_demo_cm7.eww

2. Customize the project. For projects using a display this includes selecting which display to use, for
networking projects it may include setting the IP number/netmask, for Wi-Fi projects it includes
selecting which M.2 module to use and which Wi-Fi network to connect to.

These settings are handled differently for different SDK versions and different MCUs so consult the
readme.txt file available in the docs/ folder of each example for information.

3. Select the desired build target from the drop-down.
For this example, select the “debug” target.

iMX RT Developer’s Kit - Program Development Guide Page 14

Copyright 2021 © Embedded Artists AB

The target name indicates from where the application is executing, see table below. The name also
indicates if it is a release or debug target. Release targets have a higher compiler optimization
degree making the target less suitable for debugging. Available targets differ from example to
example but here are some of the more common ones.

sdram_debug
sdram_release

The application runs in internal SRAM but with data in external
SDRAM

sdram_txt_debug
sdram_txt_release

The application runs in external SDRAM but with data in internal
SRAM

debug
release

The application runs in internal SRAM

flexspi_nor_debug
flexspi_nor_release

The application runs in external flash, which must be
programmed before use.

flexspi_nor_sdram_debug
flexspi_nor_sdram_release

The application runs in external flash and use SDRAM. The
external flash must be programmed before use.

Note that the target has its own set of options so changing for example include path in one target
does not affect the other targets.

4. To build the demo application, click the “Make” button, highlighted in red below.

5. The build will complete without errors

4.3 Run an Example Application

To download and run the application, perform these steps:

1. Prepare the hardware as described in chapter 2.3 and power it on.

2. Open the terminal application on the PC, such as TeraTerm or PuTTY, and connect to the virtual
COM port. Configure the terminal with 115200 baud, 8N1.
You can alter the baud rate by searching for the BOARD_DEBUG_UART_BAUDRATE define in
file: board.h

iMX RT Developer’s Kit - Program Development Guide Page 15

Copyright 2021 © Embedded Artists AB

3. Click the "Download and Debug" button to download the application to the target.

4. The application is then downloaded to the target and automatically runs to the main() function.

5. Run the code by clicking the "Go" button to start the application.

6. The hello_world application is now running, and a banner is displayed on the terminal. If this is not
true, check your terminal settings and connections.

iMX RT Developer’s Kit - Program Development Guide Page 16

Copyright 2021 © Embedded Artists AB

5 Getting Started with NXP MCUXpresso IDE
This section is a guide to open, build and debug an example application using NXP MCUXpresso IDE. It is
assumed that you have this development environment installed on your computer.

5.1 Install the SDK

MCUXpresso requires the SDK to be installed before it can be used. To do that start MCUXpresso and then
drag-n-drop the SDK zip file that was downloaded in 2.1 to the "Installed SDKs" tab in MCUXpresso:

During the installation MCUXpresso will make a copy of the zip file that you drag-n-dropped so it is ok to
delete it afterwards if you don't need it for one of the other IDEs.

5.2 Build an Example Application

The following steps will guide you through opening the hello_world application from the SDK.

1. Install the SDK as described in section 5.1 if you have not done so already

2. Click the "Import SDK example(s)…" link in the Quickstart Panel

iMX RT Developer’s Kit - Program Development Guide Page 17

Copyright 2021 © Embedded Artists AB

3. Select the iMX RT Developer’s Kit (in this case the eaimxrt1176). Click Next to go to the project
selector.

4. Select the hello_world example for Cortex-M7 (ends in _cm7) and make sure to switch from
Semihost to UART for the SDK Debug Console.

iMX RT Developer’s Kit - Program Development Guide Page 18

Copyright 2021 © Embedded Artists AB

5. Click finish to have MCUXpresso import and set up the selected project.

6. Click Build in the Quickstart Panel

7. The build will complete without errors

5.3 Run an Example Application

To download and run the application, perform these steps:

1. Prepare the hardware as described in chapter 2.3 and power it on.

2. Open the terminal application on the PC, such as TeraTerm or PuTTY, and connect to the virtual
COM port. Configure the terminal with 115200 baud, 8N1.
You can alter the baud rate by searching for the BOARD_DEBUG_UART_BAUDRATE define in
file: board.h

iMX RT Developer’s Kit - Program Development Guide Page 19

Copyright 2021 © Embedded Artists AB

3. Click the "Debug" button in the Quickstart Panel to download the application to the target.

4. The application is then downloaded to the target and automatically runs to the main() function.

5. Run the code by clicking the "Resume" button to start the application.

6. The hello_world application is now running, and a banner is displayed on the terminal. If this is not
true, check your terminal settings and connections.

5.4 Target Memory

Almost all examples for MCUXpresso are setup to run from flash. If the flash is used, or not, can be seen
when compiling:

iMX RT Developer’s Kit - Program Development Guide Page 20

Copyright 2021 © Embedded Artists AB

iMX RT Developer’s Kit - Program Development Guide Page 21

Copyright 2021 © Embedded Artists AB

To run the program in RAM/SDRAM (if it is small enough to fit):

1. Open the Project -> Properties menu and navigate to MCU Settings

2. Select the BOARD_FLASH row in the table and then click the Delete button to remove the flash.

iMX RT Developer’s Kit - Program Development Guide Page 22

Copyright 2021 © Embedded Artists AB

3. Go to Settings and the Preprocessor entry

4. There are three symbols that must be changed. The symbols are
XIP_BOOT_HEADER_DCD_ENABLE, XIP_EXTERNAL_FLASH and
XIP_BOOT_HEADER_ENABLE. Double-click each one and change the value from 1 to 0 to
disable the feature.

5. Build the project and look at the output. The BOARD_FLASH is no longer present and instead the
SDRAM is used:

iMX RT Developer’s Kit - Program Development Guide Page 23

Copyright 2021 © Embedded Artists AB

5.5 Troubleshooting

It is possible that a dialog like this pops up when building your project:

That error message appears because the project was not 100% imported and this happens sometimes if
you select multiple projects to import at the same time. To fix the problem you have two choices:

Option 1: Right click the project, select Delete and make sure that the checkbox for deleting the content on
the disk is filled in. You can then import that project again.

Option 2: Switch to a new workspace and only import that project.

iMX RT Developer’s Kit - Program Development Guide Page 24

Copyright 2021 © Embedded Artists AB

6 Debug Interface
It is strongly recommended to use a debug/JTAG probe during program development. The low-cost MCU-
Link (Pro) or LPC-Link2 are excellent choices. Keil ULINK2 and ULINKplus, as well as Segger JLINK, are
also excellent debug probes.

There is a Cortex Debug interface connector (J11) on the uCOM Carrier board. It is a 2x5 pos, 50 mil pitch
connector with a shroud. Note that pin 7 is present. Some debug probe connectors have plugged pin 7.
Such a cable connector cannot be used.

Figure 1 – Debug Interfaces on uCOM Carrier board

Note that due to the powering sequencing requirements on the i.MX family, the debug probe I/O
voltage MUST follow the i.MX I/O voltage.

The debug adapter must not drive any output higher than the Vcc/Vref voltage (and if that voltage
is zero, then the debug adapter must not drive any output signal). Vcc/Vref is pin 1 on J11.

Make sure the debug probe does not have a fixed output voltage, but rather follow Vcc/Vref. If
using LPC-Link2 as debug interface, make sure there is NO jumper inserted in JP2 on the LPC-
Link2.

6.1 J-LINK/J-TRACE Support

This section describes the steps necessary to get the Segger J-TRACE to work with NXP MCUXpresso and
Keil uVision. The same instructions are likely to work for Segger J-LINK as well, but it has not been verified.

6.1.1 Install J-LINK Software

Use version v6.90a or later to get the best support for J-TRACE/J-LINK. The latest version can be found
here: https://www.segger.com/downloads/jlink/.

6.1.2 MCUXpresso

Build and then launch the debugger. MCUXpresso will detect the J-LINK / J-TRACE and configure itself
correctly.

Debug Connector

J11

https://www.segger.com/downloads/jlink/

iMX RT Developer’s Kit - Program Development Guide Page 25

Copyright 2021 © Embedded Artists AB

6.1.3 Keil uVision

All projects have been configured to use CMSIS-DAP as debug hardware. Follow the steps below to switch
to J-LINK/J-TRACE.

Change the Debugger from the default CMSIS-DAP to J-LINK / J-TRACE Cortex, as shown in picture below:

Figure 2 – Setting Debug Interface in Keil uVision

Open the settings dialog and change to the following settings:

Figure 3 – Configuring J-TRACE/J-LINK Interface in Keil uVision

iMX RT Developer’s Kit - Program Development Guide Page 26

Copyright 2021 © Embedded Artists AB

Switch to the Flash Download tab and make sure that the flash algorithm is correct for the MCU according to
this table:

Figure 4 – Configuring Flash Programming for J-TRACE/J-LINK Interface in Keil uVision for iMX RT1176

Product Flash Description

iMX RT1064 MIMXRT106x 4mB Winbond QSPI Flash, 4M, On-chip Flash

iMX RT1166 MIMXRT117x 16mB QuadSPI NOR Flash, 16M, Ext Flash SPI

iMX RT1176 MIMXRT117x 16mB QuadSPI NOR Flash, 16M, Ext Flash SPI

iMX RT Developer’s Kit - Program Development Guide Page 27

Copyright 2021 © Embedded Artists AB

7 Standalone Program Download
This chapter describes how to download an application to the iMX RT board without using the IDE. Note that
this section does not describe how to create the application code (create the application, compile and link it).
It is assumed that a binary file exist that represent the application program.

As a reminder, there are two basic methods for program download:

• ISP over USB Program Download
ISP is short for In-System Programming. The i.MX RT MCU contains a bootloader in ROM that can
be enabled by pressing the ISP Enable push-button.
An application (MCUXpresso Secure Provisioning Tools) provided by NXP is needed on the PC for
downloading and flashing the application code. It is this method that will be described in this
chapter.

o This method of programming is useful during production

o The MCUXpresso Secure Provisioning Tools application is needed to generate an
authenticated or encrypted image of the application.

o Technically it is possible to program/flash without a JTAG probe (via NXP's MCUXpresso
Secure Provisioning Tools application), but it is strongly recommended to use the proper
tool for debugging - i.e., use a JTAG probe!

• SWD/JTAG Debug Interface
Using this method, the application can be downloaded to internal SRAM, to external SDRAM or
external flash.
This method is tightly integrated with the Integrated Development Environment (IDE) used. Specific
scripts (and sometimes flash programming algorithms) must exist for the used IDE. Currently such
scripts and drivers exist for Keil uVision/MDK, NXP MCUXpresso and IAR Embedded Workbench.
For other IDEs, check supported functions.

o There are many different SWD/JTAG interfaces on the market. NXP has created the low-
cost MCU-Link and LPC-LINK2, Keil has ULINK2/ULINKpro, Segger has J-LINK, etc.

7.1 Install the Required Software

Download MCUXpresso Secure Provisioning Tools from NXP's website. It can be found under the Tools &
Software tab for each MCU or directly here. The tool is available for Windows, MacOS and Linux but this
document only covers the Windows use case. Patching and using the MacOS and Linux versions should be
very similar with only paths and file names varying.

The default installation location is c:\nxp\MCUX_Provi_v2.1\ which will be referred to as <install directory>
from now on.

7.2 Prepare the Program to Flash

A program can be setup to run directly in external nor flash, in internal SRAM or in (external) SDRAM and
the project must be modified accordingly. This is described in detail in section 7.2 RT10xx/RT11xx Device
Workflow of the User Manual - MCUXpresso Secure Provisioning Tools that comes with the installation of
the tool (filename: MCUXpresso Secure Provisioning Tools.pdf) or it can be viewed here:
https://www.nxp.com/docs/en/user-guide/MCUXSPTUG.pdf

As an example, this is what was needed to prepare the led_blinky demo application:

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools/mcuxpresso-secure-provisioning-tool:MCUXPRESSO-SECURE-PROVISIONING
https://www.nxp.com/docs/en/user-guide/MCUXSPTUG.pdf

iMX RT Developer’s Kit - Program Development Guide Page 28

Copyright 2021 © Embedded Artists AB

1) Open the project
<install_dir>\eaimxrt1176_sdk_2_10_1\boards\evkmimxrt1170\de

mo_apps\led_blinky\cm7\mdk\iled_blinky_cm7.uvprojx

2) Select the “sdram_debug” target

3) Open Project->Options-Output and make sure that “Create HEX File” is selected

4) Switch to the Linker tab and click Edit to open the scatter file in the background

5) Close the dialog with the OK button (to save the change made in step 3)

6) Modify the following lines in the scatter file:

#define m_interrupts_start 0x00000000

#define m_interrupts_size 0x00000400

#define m_text_start 0x00000400

#define m_text_size 0x0003FC00

#define m_data_start 0x80000000

#define m_data_size 0x01000000

to look like this:

#define m_interrupts_start 0x80002000

#define m_interrupts_size 0x00000400

#define m_text_start 0x80002400

#define m_text_size 0x0001DC00

#define m_data_start 0x80020000

#define m_data_size 0x00DE0000

7) Save the file

8) Press F7 or Project->Build Target

9) There should now be a hex file here:
<install_dir>\eaimxrt1176_sdk_2_10_1\boards\evkmimxrt1170\de

mo_apps\led_blinky\cm7\mdk\sdram_debug\iled_blinky_cm7.hex

7.3 Booting an Unsigned Image

Unsigned image is typically used for development. It's recommended to start with this boot type before
working with secured images to verify that the executable image works properly.

The first step is to convert the prepared application into a bootable image:

iMX RT Developer’s Kit - Program Development Guide Page 29

Copyright 2021 © Embedded Artists AB

1. Start with a new workspace, File->New Workspace…

2. Select a location for the workspace and which processor to use. Click Create.

3. Make sure that Boot Type is Unsigned

4. Set Boot Device to flex-spi-nor/IS25LPxxxA_IS25WPxxxA for iMX RT11xx targets. For the iMX
RT1064 set the Boot Device to flex-spi-nor/W25Q32JV.

5. Switch to the Build Image tab

6. Select the Source executable image that was prepared in the previous section, i.e.
iled_blinky_cm7.hex

7. If (and only if) the application uses SDRAM, select the Use custom DCD option and point to the
dcd_sdram.bin file from the <install directory>\bin\data\targets\mimxrt*\ folder

8. Click Build Image

To write the image:

1. Switch to the Write Image tab

2. Make sure that the Use built image option is selected

3. Connect the hardware to the PC using micro-B to A USB cables in both J26 and J29 connectors

iMX RT Developer’s Kit - Program Development Guide Page 30

Copyright 2021 © Embedded Artists AB

4. Put the hardware in ISP mode:

a. Push and hold down the ISP enable button

b. Press the Reset button

c. Release the Reset button

d. Wait 1 seconds

e. Release the ISP enable button

5. Press the Write Image button

6. When finished, press the Reset button on the hardware to run the program

7.4 Booting an Authenticated or Encrypted Image

The MCUXpresso Secure Provisioning Tools support authenticated (signed) and encrypted
(signed+encrypted) images. This is described in detail in the User Manual for the tool. A couple of very
important notes:

1. Encrypted images cannot be used for applications that execute directly in the flash (XiP).

2. Burning the fuses in the processor is an irreversible operation. If the fuses are burned and the key
is lost then there is no way to burn anything again on that hardware so make sure to backup the
(generated) keys BEFORE burning them to the hardware.

3. If the instructions mention setting the SW7 DIP to the board to 0001 it means putting the board into
ISP mode. This is done on the Developers Kit by:

a. Push and hold down the ISP enable button

b. Press the Reset button

c. Release the Reset button

d. Wait 1 seconds

e. Release the ISP enable button

iMX RT Developer’s Kit - Program Development Guide Page 31

Copyright 2021 © Embedded Artists AB

8 Terminal Application Setup
This chapter contains information about the terminal connection that exist on the uCOM Carrier Board, and
how to setup a terminal application on the PC. The terminal connection connects UART1 of the i.MX RT to a
virtual COM port over the USB interface available on J29. The terminal is commonly used during program
development.

8.1 UART-to-USB Bridge

The UART-to-USB bridge chip (FT230XS-R from FTDI) on the uCOM Carrier Board connects to UART
channel #1 on the i.MX RT. It exists to simplify connection to a PC because serial ports are not so common
any more, especially not on laptops. The USB port also offers the possibility to power the board.

There are two LEDs, transmit from the board (LED9) and receive to the board (LED8), that signal
communication activity.

See picture below for locating relevant components.

Figure 5 – UART-to-USB Bridge

8.2 Terminal Application on the PC

Begin by connecting the micro-B USB connector to J29, see picture above. Connect the other end of the
USB cable to the PC. The PC will typically immediately begin installing drivers automatically for the UART-
to-USB bridge that creates a Virtual COM port, if they are not already installed. If you have problems the
drivers can be downloaded from the links below:

http://www.ftdichip.com/Drivers/VCP.htm
http://www.ftdichip.com/Support/Documents/InstallGuides.htm

When the driver has been installed, a new COM port will be listed under “Ports” in the Device Manager as
shown in Figure 6. Please note that the actual port number will most likely be different on your computer.

USB micro-B Connector

J29 Transmit

LED

Receive

LED

UART channel jumper

JP19
Insert to connect UART receive

pin of uCOM processor

http://www.ftdichip.com/Drivers/VCP.htm

iMX RT Developer’s Kit - Program Development Guide Page 32

Copyright 2021 © Embedded Artists AB

Figure 6 – Virtual COM port shown in device manager

The next step is to open a terminal application and attached it to the Virtual COM port that has just been
created. The baud rate should be 115200.

Some development environments/IDEs have a built-in terminal application that can be used. Sometimes it is
better to have a terminal application with more features. For increased flexibility, we recommend using any
of the two alternative terminal applications presented in the following sub-sections.

8.2.1 Tera Term Terminal Emulation Application

We recommend that you use Tera Term which can be downloaded and installed from either of the links
below.

https://ttssh2.osdn.jp/index.html.en
http://sourceforge.jp/projects/ttssh2/releases/

Launch Tera Term. The first time it launches, it will show you the following dialog. Select the serial option.
Assuming the USB cable is connected to the uCOM Carrier Board, there should be a COM port
automatically populated in the list.

Figure 7 – Tera Term New Connection Window

Configure the serial port settings (using the COM port number identified earlier) to 115200 baud rate, 8 data
bits, no parity and 1 stop bit. To do this, go to Setup → Serial Port and change the settings.

https://ttssh2.osdn.jp/index.html.en
http://sourceforge.jp/projects/ttssh2/releases/

iMX RT Developer’s Kit - Program Development Guide Page 33

Copyright 2021 © Embedded Artists AB

Figure 8 – Tera Term Serial Port Setup

Verify that the connection is open. If connected, Tera Term will show something like below in its title bar.

Figure 9 – Tera Term Menu

8.2.2 PuTTY terminal emulation application

Alternatively, you can use PuTTY. It is another commonly used terminal emulation application. PuTTY can
be downloaded and installed from the link below.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Launch PuTTY by either double clicking on the *.exe file you downloaded or from the Start menu, depending
on the type of download you selected.

In the window that launches, select the Serial radio button and enter the COM port number that you
determined earlier. Also enter the baud rate, in this case 115200.

Figure 10 – PuTTY New Session Configuration

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

iMX RT Developer’s Kit - Program Development Guide Page 34

Copyright 2021 © Embedded Artists AB

Click Open to open the serial connection. Assuming the FTDI cable is connected and you entered the
correct COM port, the terminal window will open. If the configuration is not correct, PuTTY will alert you.

iMX RT Developer’s Kit - Program Development Guide Page 35

Copyright 2021 © Embedded Artists AB

9 Booting from External Memory
The i.MX RT MCU does not have any internal flash memory for storing the application. It must be stored in
an external memory. The i.MX RT1064 is no exception, but NXP has packaged a QSPI flash chip inside the
same package as the microcontroller itself, so it looks like the flash memory is internal. From a program
development and memory layout point of view, all i.MX RT microcontrollers are designed the same.

On the iMX RT1064 uCOM board, the flash memory is inside the package (as mentioned above) and is a
4MByte QSPI memory.

On the iMX RT1166/RT1176 uCOM boards, the flash memory is an external 16Mbyte QSPI memory.

The i.MX RT MCU always boots (i.e., starts executing) from these respective QSPI flash memories.

First, let's investigate the three use-cases when executing an application. The picture below illustrates the
first main use-case when executing an application.

Figure 11 – i.MX RT and External QSPI flash - Executing from SRAM

1. The application is stored in the external flash and the bootloader (inside the i.MX RT) copies it into
internal SRAM and then run from there.

a. The execution performance will be the highest in this setup.

b. During program development the application is just downloaded to internal SRAM by the
debugger. There is no need to first download the application to the external flash memory.
The address (in SRAM) where the application is downloaded is the same that it will be
copied to by the on-chip bootloader in a final deployed system.

i.MX RT

External
QSPI Flash

Internal
SRAM

Cortex-M7
core

1a - Copy application into SRAM during boot time

1b - Execute from SRAM

32 MByte
SDRAM

Memory from where
application is

executed

iMX RT Developer’s Kit - Program Development Guide Page 36

Copyright 2021 © Embedded Artists AB

The second use-case is illustrated below. It is the default option supported when compiling and building the
Xip targets.

Figure 12 – i.MX RT and QSPI flash - Executing from external flash

Note that on the i.MX RT1064 microcontroller, the external flash is inside the same package, but the overall
architecture is still the same.

2. The application is stored in the external flash and executed from there. In this case, the internal
SRAM is probably too small for the application or is simply used for other things like data storage.

a. The execution performance will be considerably lower than the performance when
executing from internal SRAM.

b. During program development the application must be downloaded/flashed to the external
flash memory before debugging starts. This is normally handled automatically by the IDE
(Integrated Development Environment).

i.MX RT

External
QSPI flash

Internal
SRAM

Cortex-M7
core

32 MByte
SDRAM

Memory from where
application is

executed

iMX RT Developer’s Kit - Program Development Guide Page 37

Copyright 2021 © Embedded Artists AB

The third use-case is just a mixture of the two main ones. Two, or more memories, are used for storing
executable code.

Figure 13 – i.MX RT and QSPI flash - Executing from all memories

3. The third setup is a mixture of the two above. Part of the application is copied into SRAM and/or
SDRAM and part is executed directly from the external flash. A reason for placing part of an
application in SRAM can be a need for highest performance for a data processing algorithm or a
time critical interrupt service routine.

a. Note that this is a more complicated system architecture. The application must implement
a dynamic loader that can copy code from the external flash to SRAM, either on-demand
or in a pre-scheduled way. The linker script can be much more complicated because of
this. There is no general solution for this system solution. Every system must be
individually investigated in order to select and implement the best solution.

i.MX RT

External
QSPI flash

Internal
SRAM

Cortex-M7
core

3a - Copy application into SRAM and/or SDRAM

32 MByte
SDRAM

Memory from where
application is

executed

3b - Executing directly from all memories

iMX RT Developer’s Kit - Program Development Guide Page 38

Copyright 2021 © Embedded Artists AB

10 Troubleshooting

10.1 Cannot debug / download

In some cases, the IDE complains about not being able to connect to the target. This is most likely because
the program already running on the target is interfering. If you, for example, get a dialog in MCUXpresso
similar to Figure 14 below the reason is most likely because of an interfering application.

Figure 14 - No SWD Devices detected

The solution is to put the hardware in ISP mode before starting the flash/debug operation in the IDE. To do
this you need to press a couple of buttons on the carrier board, see Figure 15.

1. Push and hold down the ISP enable button

2. Press the Reset button

3. Release the Reset button

4. Wait 1 second

5. Release the ISP enable button

Figure 15 - Buttons on uCOM carrier board

iMX RT Developer’s Kit - Program Development Guide Page 39

Copyright 2021 © Embedded Artists AB

If the LPC-Link2 debugger is used then there are some additional things to note:

1. Make sure that the J2 jumper on the LPC-Link2 is not inserted. If the jumper is inserted/closed then
the target will be powered by the LPC-Link2 which might be too much power for the usb port that
the LPC-Link2 is connected to.

2. If the LPC-Link2 is not found by the IDE and you are working on a laptop then try using a powered
usb hub instead.

3. The troubleshooting section in this forum post has a couple of additional things to try:
https://community.nxp.com/thread/388964

4. There is a Using and troubleshooting LPC-Link2 in the Appendix - Additional Hints and Tips of the
User Guide for MCUXpresso IDE. The location of the document is
c:\nxp\MCUXpressoIDE_11.0.0_2516\MCUXpresso_IDE_User_Guide.pdf if the IDE was installed
with the default settings (correct path for your specific version of MCUXpresso).

https://community.nxp.com/thread/388964

iMX RT Developer’s Kit - Program Development Guide Page 40

Copyright 2021 © Embedded Artists AB

11 Things to Note
11.1 ESD Precaution

Please note that the iMX RT uCOM Board and uCOM Carrier Board come
without any case/box and all components are exposed for finger touches – and
therefore extra attention must be paid to ESD (electrostatic discharge)
precaution.

Make it a habit always to first touch the metal surface of one of the USB,
uSD or Ethernet connectors for a few seconds with both hands before
touching any other parts of the boards. That way, you will have the same
potential as the board and therefore minimize the risk for ESD.

Never touch directly on the iMX RT uCOM Board and in general as little as possible on the uCOM Carrier
Board. The push-buttons on the uCOM Carrier Board have grounded shields to minimize the effect of ESD.

Note that Embedded Artists does not replace boards that have been damaged by ESD.

11.2 General Handling Care

Handle the iMX RT uCOM Board and uCOM Carrier Board with care. The boards are not mounted in a
protective case/box and are not designed for rough physical handling. Connectors can wear out after
excessive use. The uCOM Carrier Board is designed for prototyping use, and not for integration into an end-
product.

For boards with LCD, do not exercise excessive pressure on the LCD glass area. That will damage the
display. Also, do not apply pressure on the flex cables connecting the LCD/touch screen. These are
relatively sensitive and can be damaged if too much pressure is applied to them.

Note that Embedded Artists does not replace boards where the LCD has been improperly handled.

11.3 OTP Fuse Programming

The i.MX RT MCU has on-chip OTP fuses that can be programmed. Once programmed, there is no
possibility to reprogram them.

iMX RT uCOM Boards are delivered with OTP fuse programming to boot from external QSPI flash. The rest
of the fuses are completely up to the user to decide if OTP fuses shall be programmed and in that case,
which ones.

Note that Embedded Artists does not replace iMX RT uCOM Boards because of wrong OTP
programming. It’s the user’s responsibility to be absolutely certain before OTP programming and
not to program the fuses by accident.

iMX RT1052/1062 OEM Developer’s Kit - User’s Guide Page 41

Copyright 2021 © Embedded Artists AB

12 Disclaimers
Embedded Artists reserves the right to make changes to information published in this document,
including, without limitation, specifications and product descriptions, at any time and without notice.
This document supersedes and replaces all information supplied prior to the publication hereof.

Customer is responsible for the design and operation of their applications and products using
Embedded Artists’ products, and Embedded Artists accepts no liability for any assistance with
applications or customer product design. It is customer’s sole responsibility to determine whether the
Embedded Artists’ product is suitable and fit for the customer’s applications and products planned, as
well as for the planned application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks associated with their
applications and products. Customer is required to have expertise in electrical engineering and
computer engineering for the installation and use of Embedded Artists’ products.

Embedded Artists does not accept any liability related to any default, damage, costs or problem which
is based on any weakness or default in the customer’s applications or products, or the application or
use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for
the customer’s applications and products using Embedded Artists’ products in order to avoid a default
of the applications and the products or of the application or use by customer’s third party customer(s).
Embedded Artists does not accept any liability in this respect.

Embedded Artists does not accept any liability for errata on individual components. Customer is
responsible to make sure all errata published by the manufacturer of each component are taken note
of. The manufacturer's advice should be followed.

Embedded Artists does not accept any liability and no warranty is given for any unexpected software
behavior due to deficient components.

Customer is required to take note of manufacturer's specification of used components, for example
MCU, SDRAM and FLASH. Such specifications, if applicable, contains additional information that must
be taken note of for the safe and reliable operation. These documents are stored on Embedded Artists'
product support page.

All Embedded Artists’ products are sold pursuant to Embedded Artists’ terms and conditions of sale:
http://www.embeddedartists.com/sites/default/files/docs/General_Terms_and_Conditions.pdf

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted
under this document. If any part of this document refers to any third party products or services it shall
not be deemed a license grant by Embedded Artists for the use of such third party products or
services, or any intellectual property contained therein or considered as a warranty covering the use in
any manner whatsoever of such third party products or services or any intellectual property contained
therein.

UNLESS OTHERWISE SET FORTH IN EMBEDDED ARTISTS’ TERMS AND CONDITIONS OF SALE
EMBEDDED ARTISTS DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO
THE USE AND/OR SALE OF EMBEDDED ARTISTS PRODUCTS INCLUDING WITHOUT
LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY THE CEO OF EMBEDDED ARTISTS,
PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY,
AIR CRAFT, SPACE, NUCLEAR, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN
PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL
INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of Embedded Artists’ products with provisions different from the statements and/or technical
features set forth in this document shall immediately void any warranty granted by Embedded Artists

iMX RT1052/1062 OEM Developer’s Kit - User’s Guide Page 42

Copyright 2021 © Embedded Artists AB

for the Embedded Artists’ product or service described herein and shall not create or extend in any
manner whatsoever, any liability of Embedded Artists.

This document as well as the item(s) described herein may be subject to export control regulations.
Export might require a prior authorization from national authorities.

12.1 Definition of Document Status

Preliminary – The document is a draft version only. The content is still under internal review and
subject to formal approval, which may result in modifications or additions. Embedded Artists does not
give any representations or warranties as to the accuracy or completeness of information included
herein and shall have no liability for the consequences of use of such information. The document is in
this state until the product has passed Embedded Artists product qualification tests.

Approved – The information and data provided define the specification of the product as agreed
between Embedded Artists and its customer, unless Embedded Artists and customer have explicitly
agreed otherwise in writing.

