

 iMX 6/7/8 Boot time and optimization
Copyright 2020 © Embedded Artists AB

iMX 6/7/8 Boot Time

and Optimization

iMX 6/7/8 Boot Time and Optimization Page 2

Copyright 2020 © Embedded Artists AB Rev A

Embedded Artists AB
Jörgen Ankersgatan 12
SE-211 45 Malmö
Sweden

https://www.EmbeddedArtists.com

Copyright 2020 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of
Embedded Artists AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and
specifically disclaim any implied warranties or merchantability or fitness for any particular purpose.
Information in this publication is subject to change without notice and does not represent a
commitment on the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements on this document. Send your comments
by using the contact form: www.embeddedartists.com/contact.

Trademarks

All brand and product names mentioned herein are trademarks, services marks, registered
trademarks, or registered service marks of their respective owners and should be treated as such.

https://www.embeddedartists.com/

iMX 6/7/8 Boot Time and Optimization Page 3

Copyright 2020 © Embedded Artists AB Rev A

Table of Contents
1 Document Revision History 4

2 Introduction ... 5

2.1 Additional documentation ... 5

2.2 Conventions .. 5

3 Boot times ... 6

3.1 Summary ... 6

3.2 Time points explained .. 6

3.2.1 SPL: board_init_f .. 6

3.2.2 U-boot: board_early_init_f ... 7

3.2.3 U-boot: board_init .. 7

3.2.4 U-boot: Starting kernel… ... 7

3.2.5 Linux: Init process ... 7

3.2.6 Linux: Basic service ... 7

3.2.7 Linux: Login prompt ... 7

3.3 How was it measured ... 7

3.3.1 U-boot.. 7

3.3.2 Linux .. 8

4 Boot time optimization – iMX8M Mini uCOM 10

4.1 U-boot boot delay ... 10

4.2 Silence the kernel ... 10

4.3 Simplify boot command ... 10

4.4 Increase I2C speed in SPL ... 11

4.5 Disable U-boot functionality .. 11

4.6 Disable peripherals in kernel device tree (dts) 12

4.7 Reduce kernel size ... 13

4.8 Summary of reduced boot time ... 13

5 Sleep mode to running 14

5.1 Summary ... 14

5.2 How was it measured ... 15

5.2.1 Shell script toggling GPIO ... 15

5.2.2 GPIO’s and TTY .. 15

5.2.3 Commands .. 16

5.2.4 iMX7ULP uCOM .. 16

5.2.5 UART / TTY pins on expansion connector 17

6 Hardware related delays 18

6.1 Cold reset .. 18

6.2 Warm reset .. 18

iMX 6/7/8 Boot Time and Optimization Page 4

Copyright 2020 © Embedded Artists AB Rev A

1 Document Revision History
Revision Date Description

A 2020-10-26 First release

iMX 6/7/8 Boot Time and Optimization Page 5

Copyright 2020 © Embedded Artists AB Rev A

2 Introduction
This document shows the Linux kernel boot time for Embedded Artists i.MX 6/7/8 based COM boards.
There is also a section exploring boot time optimization for the iMX8M Mini uCOM board.

2.1 Additional documentation

Additional documentation you might need is.

 Bootlin: Boot time optimization
https://bootlin.com/doc/training/boot-time/boot-time-slides.pdf

 Embedded Linux Wiki: A pragmatic guide to boot-time optimization
https://elinux.org/images/6/64/Chris-simmonds-boot-time-elce-2017_0.pdf

2.2 Conventions

A number of conventions have been used throughout to help the reader better understand the content
of the document.

Constant width text – is used for file system paths and command, utility and tool names.

$ This field illustrates user input in a terminal running on the

development workstation, i.e., on the workstation where you edit,

configure and build Linux

This field illustrates user input on the target hardware, i.e.,

input given to the terminal attached to the COM Board

TThhiiss ffiieelldd iiss uusseedd ttoo iilllluussttrraattee eexxaammppllee ccooddee oorr eexxcceerrpptt ffrroomm aa

ddooccuummeenntt..

https://bootlin.com/doc/training/boot-time/boot-time-slides.pdf
https://elinux.org/images/6/64/Chris-simmonds-boot-time-elce-2017_0.pdf

iMX 6/7/8 Boot Time and Optimization Page 6

Copyright 2020 © Embedded Artists AB Rev A

3 Boot times
3.1 Summary

The table below lists the boot times measured for the Embedded Artists iMX 6/7/8 COM boards. The
value is number of milliseconds since the processor starts executing after a reset. Each row represents
a time point / measurement point during boot and section 3.2 explains these in more detail.

Please note that this is the times measured during one test run for one specific build for the specific
target. The boot time can naturally change between different runs as well as for different builds. Only
one boot time optimization has been applied and that is the U-boot boot delay set to zero, see section
4.1 below. This optimization was applied to be able to better compare the boot times between the
different boards since the default boot delay can be different for different boards.

Build details:

 Date: 2020-09-17

 Linux: 5.4.24

 U-boot: 2020.04

 meta-ea commit: d5dcc59ee673ad99e99da892f79ce0966f1c3b61

T
im

e
p

o
in

t

iM
X

8M
 M

in
i

u
C

O
M

iM
X

8M
 N

an
o

u
C

O
M

iM
X

8M
 Q

u
ad

C
O

M

iM
X

6
Q

u
ad

C
O

M

iM
X

6
D

u
al

L
it

e

C
O

M

iM
X

6
S

o
lo

X

C
O

M

iM
X

6
U

lt
ra

L
it

e

C
O

M

iM
X

7
D

u
al

C
O

M

iM
X

7
D

u
al

u
C

O
M

iM
X

7U
L

P

u
C

O
M

SPL:
board_init_f

153 168 275 402 103 127 115 102 93 -

u-boot: board_
early_init_f

1364 1030 1250 851 534 504 447 419 418 -

u-boot:
board_init

1597 1243 1518 1024 632 590 529 484 485 889

u-boot:
Starting kernel

2959 2682 2846 2044 1627 1570 1485 1419 1418 1697

Linux:
Init process

6084 5792 6034 6434 5502 5820 5235 4622 5543 5447

Linux:
Basic service

8021 7760 7925 10809 10595 12664 17235 9419 10808 17728

Linux:
Login prompt

10459 12479 10643 13419 13470 15961 22532 12044 12965 23509

Table 1 - Boot times for COM boards (in milliseconds)

3.2 Time points explained

3.2.1 SPL: board_init_f

This is the time when entering into the board_init_f function in SPL (Secondary Program

Loader). This is basically the first board specific code being executed after a reset. If you need to do
really early initialization of your hardware this is where you can add that code.

iMX 6/7/8 Boot Time and Optimization Page 7

Copyright 2020 © Embedded Artists AB Rev A

3.2.2 U-boot: board_early_init_f

This is the time when entering into the board_early_init_f function in U-boot. This function is

located in the board specific code, for example, board/embeddedartists/mx8mmea-

ucom/mx8mmea-ucom.c for the iMX8M Mini uCOM board.

3.2.3 U-boot: board_init

This is the time when entering into the board_init function in U-boot. This function is located in the

board specific code, for example, board/embeddedartists/mx8mmea-ucom/mx8mmea-

ucom.c for the iMX8M Mini uCOM board.

3.2.4 U-boot: Starting kernel…

This is the time point where U-boot begins to prepare for booting the Linux kernel. In the console you
will see the output “Starting kernel …”. This output is available in the function
announce_and_cleanup in the file arch/arm/lib/bootm.c.

3.2.5 Linux: Init process

This is the time point where the user-space process ‘init’ is started. In the console you can look for the
message “Freeing unused kernel” since this is the last message before the init process is started.

This is basically the earliest time where you could have your application started. If you know what you
are doing and your application is independent of the rest of the system you could start your application
here. In general, it is however not recommended to exchange the init process with your application.

3.2.6 Linux: Basic service

This is the time point where a systemd service is started that have been configured to start after the

basic target.

For more information about systemd see: https://www.freedesktop.org/wiki/Software/systemd/.

[[UUnniitt]]

DDeessccrriippttiioonn==EEAA aafftteerr bbaassiicc..ttaarrggeett

AAfftteerr==bbaassiicc..ttaarrggeett

[[SSeerrvviiccee]]

SSttaannddaarrddOOuuttppuutt==ttttyy

TTyyppee==oonneesshhoott

EExxeeccSSttaarrtt==//hhoommee//rroooott//mmyyoouuttppuutt..sshh ""aafftteerr bbaassiicc..ttaarrggeett""

[[IInnssttaallll]]

WWaanntteeddBByy==bbaassiicc..ttaarrggeett

3.2.7 Linux: Login prompt

This is the time point where the login prompt is available and you can login to the console.

NXP i.MX Release Distro 5.4-zeus imx8mmea-ucom ttymxc1

imx8mmea-ucom login:

3.3 How was it measured

3.3.1 U-boot

A logic analyzer was used to detect when a GPIO (pin) was toggled to measure the elapsed time to a
specific point in the U-boot code. The RESET_OUT signal was used as a starting point for the

https://www.freedesktop.org/wiki/Software/systemd/

iMX 6/7/8 Boot Time and Optimization Page 8

Copyright 2020 © Embedded Artists AB Rev A

measurement. The signals were measured on the expansion board connected to the COM Carrier
board V2.

Figure 1 - Logic Analyzer

Table 2 below specifies which GPIO has been used for a specific board when measuring elapsed time.

 Processor pin name Carrier board pin name Expansion board

iMX8M Mini uCOM GPIO 2.10 GPIO_AJ J48-9

iMX8M Nano uCOM GPIO 2.10 GPIO_AJ J48-9

iMX8M Quad COM GPIO 3.15 GPIO_AF J48-84

iMX6 Quad COM GPIO 4.08 GPIO_AJ J48-9

iMX6 DualLite COM GPIO 4.08 GPIO_AJ J48-9

iMX6 SoloX COM GPIO 4.27 GPIO_P J48-91

iMX6 UltraLite COM GPIO 4.11 GPIO_P J48-91

iMX7 Dual COM GPIO 2.18 GPIO_AJ J48-9

iMX7 Dual uCOM GPIO 2.18 GPIO_AJ J48-9

iMX7ULP uCOM PTE6 GPIO_AJ J48-9

Table 2 - GPIO's used to measure time

3.3.2 Linux

In Linux, elapsed time has been measured using timestamps in the console application Tera Term.

Below is part of a log captured by Tera Term. Each line begins with a timestamp that can be used to
calculate elapsed time between different events. For example, the output “Starting kernel” (which
comes from U-boot) is at timestamp 16922 ms and “Freeing unused…” is at 20047 ms meaning that
the elapsed time between these two events is 3125 ms. We also know the time from reset to “Starting
kernel” from the measurement in U-boot, for example, 2959 ms for iMX8M Mini as shown in Table 1.
We can now calculate time from reset to “Freeing unused…” by taking 3125 + 2959 = 6084 ms.

[[00 0000::0000::1166..00775500]] 3399771100 bbyytteess rreeaadd iinn 1111 mmss ((33..44 MMiiBB//ss))

[[00 0000::0000::1166..00992222]] 2288229933663322 bbyytteess rreeaadd iinn 114433 mmss ((118888..77 MMiiBB//ss))

[[00 0000::0000::1166..00992222]] #### FFllaatttteenneedd DDeevviiccee TTrreeee bblloobb aatt 4433000000000000

[[00 0000::0000::1166..00992222]] BBoooottiinngg uussiinngg tthhee ffddtt bblloobb aatt 00xx4433000000000000

[[00 0000::0000::1166..00992222]] LLooaaddiinngg DDeevviiccee TTrreeee ttoo 000000000000000077dd551144000000,, eenndd

[[00 0000::0000::1166..00992222]]

[[00 0000::0000::1166..00992222]] SSttaarrttiinngg kkeerrnneell

[[00 0000::0000::1166..00992222]]

......

[[00 0000::0000::2200..00004477]] [[22..880011771122]] FFrreeeeiinngg uunnuusseedd kkeerrnneell mmeemmoorryy:: 22994444KK

iMX 6/7/8 Boot Time and Optimization Page 9

Copyright 2020 © Embedded Artists AB Rev A

[[00 0000::0000::2200..00004477]] [[22..882233442299]] RRuunn //ssbbiinn//iinniitt aass iinniitt pprroocceessss

......

[[00 0000::0000::2244..00442222]] iimmxx88mmmmeeaa--uuccoomm llooggiinn::

Capturing a log with timestamps in Tera Term

In Tera Term go to the File menu and then click Log as shown in Figure 2.

In the Log Dialog select where to save the log, click Timestamp in the Option section and also select
Elapsed Time (Logging) in the drop-down menu. This is shown in Figure 3.

Figure 2 - Tera Term File menu

Figure 3 - Tera Term Log dialog

iMX 6/7/8 Boot Time and Optimization Page 10

Copyright 2020 © Embedded Artists AB Rev A

4 Boot time optimization – iMX8M Mini uCOM
In this chapter we explore some of the methods of reducing the boot time for the iMX8M Mini uCOM
board. The process would be the same for a different COM board. For more ways to reduce the boot
time you can look at the documentation mentioned in section 2.1 above.

Please note that the methods are explored in the order described below. Applying a method in a
different order could also give a different reduced time for that specific method. For example, if you
would disable peripherals in the device tree before silencing the kernel the amount of reduced time due
to silencing the kernel would most likely be different. This is also the reason why the total reduced boot
time as described in section 4.8 is different from the sum of all times listed in respective section.

4.1 U-boot boot delay

By default, U-boot has been setup with a boot delay of 2 seconds for the iMX8M Mini. The reason why
the delay exists is to make it easier to enter into the U-boot console. If you hit any key on your
keyboard before the delay expires you will enter into the console.

From within the U-boot console set the boot delay to zero using the commands below.

=> setenv bootdelay 0

=> saveenv

Reduced boot time: ~2 seconds.

Note: The values specified in Table 1 in chapter 3 above already include this reduction in
boot time.

4.2 Silence the kernel

The Linux kernel outputs a lot of messages to the console during boot. Outputting characters on a
serial console takes time so reducing the amount will also reduce boot time. It is possible to do this by
setting the kernel boot argument ‘quiet’.

From within the U-boot console add ‘quiet’ to extra_bootargs.

=> setenv extra_bootargs quiet

=> saveenv

Reduced boot time: ~3.3 seconds.

Below you can see the amount of time that has been reduced at certain time points.

 Linux: Init process: ~1.9 seconds

 Linux: Basic service: ~3.0 seconds

 Linux: Login prompt: ~3.3 seconds

Note: Silencing the kernel with ‘quiet’ might also suppress error and warning messages.

4.3 Simplify boot command

The default boot command is quite complex and involves checking if devices and files are available. If
they are not trying alternative boot methods. It also involves loading a boot script from eMMC flash. For
a product where we only want to boot from eMMC the boot command can be simplified as below.

iMX 6/7/8 Boot Time and Optimization Page 11

Copyright 2020 © Embedded Artists AB Rev A

Note: By doing this simplification we lose the possibility to use extra_bootargs. We can

however use the variable args_from_script instead to set the kernel boot argument

‘quiet’.

=> setenv bootcmd 'mmc dev \${mmcdev}; if run loadimage; then run

mmcboot; fi;'

=> setenv args_from_script quiet

=> saveenv

Reduced boot time: ~200 milliseconds.

4.4 Increase I2C speed in SPL

SPL is responsible for initializing the DDR RAM. The configuration data used during initialization is
stored in EEPROM accessed via the I2C bus. Reading data from the EEPROM takes some time.

At the time of writing this document the default I2C speed in SPL is 100 kHz. Increasing this to 400
kHz will reduce the time of reading the configuration data.

To be able to increase the I2C speed you have to make two changes.

 CONFIG_SYS_I2C_SPEED: Set this define to 400000 in

include/configs/mx8mmea-ucom.h.

 CONFIG_SYS_MXC_I2C1_SPEED: Set this configuration to 400000 in

configs/mx8mmea-ucom_defconfig.

Reduced boot time: ~350 milliseconds.

4.5 Disable U-boot functionality

One more way of reducing boot time is by removing functionality that you don’t need. In this example
the following was removed from U-boot.

 Fastboot: This functionality is mainly used by the Universal Update Utility (UUU) when
flashing / programming a target. You can use a separate u-boot used by UUU that still has the
fastboot functionality.

 Video: If your product doesn’t have a display or you don’t need U-boot to show anything on
the display the video functionality can be removed

 Network. If you don’t need network functionality from U-boot this can be removed.

 MMC Env: There is a call to board_late_mmc_env_init in the board specific code that

dynamically updates the mmcdev and mmcroot variables. This exists to be more flexible of

choosing the mmc device used by U-boot and Linux kernel. In most cases the device is fixed
and cannot be changed so the call to this function can be removed.

The following changes was made in configs/mx8mmea-ucom_defconfig. The configurations

below were previously enabled, that is, set to ‘y’.

CCOONNFFIIGG__FFAASSTTBBOOOOTT==nn

CCOONNFFIIGG__UUSSBB__FFUUNNCCTTIIOONN__FFAASSTTBBOOOOTT==nn

CCOONNFFIIGG__CCMMDD__FFAASSTTBBOOOOTT==nn

CCOONNFFIIGG__AANNDDRROOIIDD__BBOOOOTT__IIMMAAGGEE==nn

CCOONNFFIIGG__FFAASSTTBBOOOOTT__UUUUUU__SSUUPPPPOORRTT==nn

CCOONNFFIIGG__VVIIDDEEOO__IIMMXX__SSEECC__DDSSII==nn

CCOONNFFIIGG__DDMM__VVIIDDEEOO==nn

CCOONNFFIIGG__VVIIDDEEOO__AADDVV77553355==nn

iMX 6/7/8 Boot Time and Optimization Page 12

Copyright 2020 © Embedded Artists AB Rev A

CCOONNFFIIGG__SSYYSS__WWHHIITTEE__OONN__BBLLAACCKK==nn

CCOONNFFIIGG__NNEETT==nn

The following configurations were removed in include/configs/mx8mmea-ucom.h

//**

 ##ddeeffiinnee CCOONNFFIIGG__CCMMDD__UUSSBB__MMAASSSS__SSTTOORRAAGGEE

 ##ddeeffiinnee CCOONNFFIIGG__UUSSBB__GGAADDGGEETT__MMAASSSS__SSTTOORRAAGGEE

 ##ddeeffiinnee CCOONNFFIIGG__UUSSBB__FFUUNNCCTTIIOONN__MMAASSSS__SSTTOORRAAGGEE

**//

Remove the call to board_late_mmc_env_init in board/embeddedartists/mx8mmea-

ucom/mx8mmea-ucom.c. The call is done in the function board_late_init.

......

iinntt bbooaarrdd__llaattee__iinniitt((vvooiidd))

{{

##iiffddeeff CCOONNFFIIGG__EENNVV__IISS__IINN__MMMMCC

//// bbooaarrdd__llaattee__mmmmcc__eennvv__iinniitt(());;

##eennddiiff

......

Reduced boot time: ~480 milliseconds.

4.6 Disable peripherals in kernel device tree (dts)

As for the U-boot, functionality can also be removed from the Linux kernel. The easiest way is to
disable peripherals in the device tree (dts). If a peripheral is disabled the corresponding driver won’t be
fully initialized and thereby reducing the boot time. We are not showing the completely modified device
tree file. It was the following functionality that was disabled.

 Audio-related

 Display-related

 Network interface

 FlexSPI

 Unused UART devices

 Unused USDHC devices

 PWM

 GPIO buffer

You disable a peripheral by setting the status in the device tree node to “disabled”. In the excerpt
below you can see how the network interface (fec1 node) is disabled.

&&ffeecc11 {{

 ppiinnccttrrll--nnaammeess == ""ddeeffaauulltt"";;

 ppiinnccttrrll--00 == <<&&ppiinnccttrrll__ffeecc11>>;;

 pphhyy--mmooddee == ""rrggmmiiii--iidd"";;

 pphhyy--hhaannddllee == <<&&eetthhpphhyy00>>;;

iMX 6/7/8 Boot Time and Optimization Page 13

Copyright 2020 © Embedded Artists AB Rev A

 ffssll,,mmaaggiicc--ppaacckkeett;;

 ssttaattuuss == ""ddiissaabblleedd"";;

 mmddiioo {{

 ##aaddddrreessss--cceellllss == <<11>>;;

 ##ssiizzee--cceellllss == <<00>>;;

 eetthhpphhyy00:: eetthheerrnneett--pphhyy@@00 {{

 ccoommppaattiibbllee == ""eetthheerrnneett--pphhyy--iieeeeee880022..33--cc2222"";;

 rreegg == <<00>>;;

 aatt880033xx,,lleedd--aacctt--bblliinndd--wwoorrkkaarroouunndd;;

 aatt880033xx,,eeeeee--ookkaayy;;

 aatt880033xx,,vvddddiioo--11pp88vv;;

 }};;

 }};;

}};;

Reduced boot time: ~130 milliseconds.

4.7 Reduce kernel size

Loading the kernel from eMMC to RAM takes time. Reducing the size of the kernel can therefore
reduce the boot time. This was tested by removing some functionality in the kernel. The kernel size
shrunk from about 26 Mbyte to about 21 Mbyte. The reduced boot time was in this case only about 50
milliseconds. This option wasn’t further explored and is not included in the summary in section 4.8
below.

4.8 Summary of reduced boot time

In Table 3 below we compare the boot time for the unmodified distribution with the one where the
above described optimizations have been applied. As you can see the total boot time from reset to
login prompt has been reduced with about 5.5 seconds (from almost 10.5 seconds to about 5
seconds).

T
im

e
p

o
in

t

U
n

m
o

d
if

ie
d

O
p

ti
m

iz
ed

R
ed

u
ce

d
 t

im
e

SPL: board_init_r 153 153 0

u-boot: board_ early_init_f 1364 1013 351

u-boot: board_init 1597 1248 349

u-boot: Starting kernel 2959 1896 1063

Linux: Init process 6084 2802 3282

Linux: Basic service 8021 3583 4438

Linux: Login prompt 10459 4927 5532

Table 3 - Summary of reduced boot time for iMX8M Mini uCOM (in milliseconds)

iMX 6/7/8 Boot Time and Optimization Page 14

Copyright 2020 © Embedded Artists AB Rev A

5 Sleep mode to running
Besides the boot time it is also of interest to know the time it takes to wake up from a sleep mode
(power-saving mode). This is for example useful if you don’t want to power down the system
completely, but instead set the system into a sleep mode in order to save power.

More information about sleep modes:

https://www.kernel.org/doc/html/v5.4/admin-guide/pm/sleep-states.html

5.1 Summary

Table 4 below lists the time it takes to wake up from a certain sleep mode for a standard, unmodified
ea-image-base build. The value is number of milliseconds since a trigger point (key pressed on

keyboard) until an application toggling a GPIO starts toggling the GPIO again.

Build details:

 Date: 2020-09-17

 Linux: 5.4.24

 U-boot: 2020.04

 meta-ea commit: d5dcc59ee673ad99e99da892f79ce0966f1c3b61

S
le

ep
 m

o
d

e

iM
X

8M
 M

in
i

u
C

O
M

iM
X

8M
 N

an
o

u
C

O
M

iM
X

8M
 Q

u
ad

C
O

M

iM
X

6
Q

u
ad

C
O

M

iM
X

6
D

u
al

L
it

e

C
O

M

iM
X

6
S

o
lo

X

C
O

M

iM
X

6
U

lt
ra

L
it

e

C
O

M

iM
X

7
D

u
al

C
O

M

iM
X

7
D

u
al

u
C

O
M

iM
X

7U
L

P

u
C

O
M

Standby - - - 88 87 95 89 98 94 -

Suspend-to-
Idle

82 15 1254 78 82 90 94 83 81 88

Suspend-to-
RAM

96 29 1274 94 94 99 89 97 97 283

Table 4 - Sleep mode to running (in milliseconds)

In Table 5 below the USB interface connected to the USB hub on the carrier board has been disabled
(in the device tree file). As you can see the wakeup time is much lower so the USB hub is causing
delays.

S
le

ep
 m

o
d

e

iM
X

8M
 M

in
i

u
C

O
M

iM
X

8M
 N

an
o

u
C

O
M

iM
X

8M
 Q

u
ad

C
O

M

iM
X

6
Q

u
ad

C
O

M

iM
X

6
D

u
al

L
it

e

C
O

M

iM
X

6
S

o
lo

X

C
O

M

iM
X

6
U

lt
ra

L
it

e

C
O

M

iM
X

7
D

u
al

C
O

M

iM
X

7
D

u
al

u
C

O
M

iM
X

7U
L

P

u
C

O
M

Standby - - - 24 24 26 35 21 25 -

Suspend-to-
Idle

17 - 11 12 17 18 17 9 14 -

Suspend-to-
RAM

31 - 21 27 30 30 28 26 28 -

Table 5 - Sleep mode to running without USB hub (in milliseconds)

https://www.kernel.org/doc/html/v5.4/admin-guide/pm/sleep-states.html

iMX 6/7/8 Boot Time and Optimization Page 15

Copyright 2020 © Embedded Artists AB Rev A

5.2 How was it measured

A shell script was created that toggles a GPIO. The board was then configured to wake up via the TTY
(UART) used by the console and then put to sleep with one of the commands described in section
5.2.3 below. When sending a character (by pressing a key on the keyboard) the board was brought up
from sleep and the shell script started running again.

A logic analyzer was used and setup to trigger on a character being sent on the TTY. The time from
this trigger point until the GPIO started to toggle was measured. See section 5.2.5 for information
about where the UART signal can be measured on the expansion connector.

5.2.1 Shell script toggling GPIO

A simple shell script was created that toggles a GPIO as fast as possible. The example below is for the
iMX8M Mini uCOM board and the script begins by setting up the GPIO to use. Table 6 below lists
GPIO’s and TTY’s for all the boards.

##!!//bbiinn//bbaasshh

eecchhoo ""SSttaarrttiinngg""

GGPPIIOO 22..1100 -->> ((22--11))**3322++1100==4422

eecchhoo 4422 >> //ssyyss//ccllaassss//ggppiioo//eexxppoorrtt

eecchhoo hhiigghh >> //ssyyss//ccllaassss//ggppiioo//ggppiioo4422//ddiirreeccttiioonn

wwhhiillee ::

ddoo

 eecchhoo 00 >> //ssyyss//ccllaassss//ggppiioo//ggppiioo4422//vvaalluuee

 eecchhoo 11 >> //ssyyss//ccllaassss//ggppiioo//ggppiioo4422//vvaalluuee

ddoonnee

The application was started by.

$ chmod a+x myapp.sh

$./myapp.sh &

5.2.2 GPIO’s and TTY

The same GPIO has been used when measuring wakeup time as was used when measuring boot time
as described in section 3.3 and Table 2.

 Processor pin name Linux pin TTY

iMX8M Mini uCOM GPIO 2.10 42 ttymxc1

iMX8M Nano uCOM GPIO 2.10 42 ttymxc1

iMX8M Quad COM GPIO 3.15 79 ttymxc0

iMX6 Quad COM GPIO 4.08 104 ttymxc3

iMX6 DualLite COM GPIO 4.08 104 ttymxc3

iMX6 SoloX COM GPIO 4.27 123 ttymxc0

iMX6 UltraLite COM GPIO 4.11 107 ttymxc0

iMX7 Dual COM GPIO 2.18 50 ttymxc0

iMX7 Dual uCOM GPIO 2.18 50 ttymxc0

Table 6 - GPIO, pin number and TTY

iMX 6/7/8 Boot Time and Optimization Page 16

Copyright 2020 © Embedded Artists AB Rev A

5.2.3 Commands

The commands below were run in Linux during measurement.

Activate wakeup from TTY. Change the TTY to the one valid for the board being tested. Below is
valid for the iMX8M Mini uCOM board.

$ echo enabled > /sys/class/tty/ttymxc1/power/wakeup

Suspend to Standby

$ echo standby > /sys/power/state

Suspend to Idle

$ echo freeze > /sys/power/state

Suspend to RAM

$ echo mem > /sys/power/state

5.2.4 iMX7ULP uCOM

The iMX7ULP processor is different since the Cortex-M4 is the main core while for the other
processors it is the Cortex-A core. Because of this the process of measuring the wakeup time is a bit
different.

The application, that by default, is running on the Cortex-M4 can wake up the Cortex-A7 core. We will
use this feature instead of using wakeup from TTY. See Figure 4 for the menu being presented by the
application running on the Cortex-M4 core. Pressing ‘W’ will wake up the Cortex-A7 core.

The wakeup time is measured as the time between pressing ‘W’ (console connected to Cortex-M4)
and the time when the first character is outputted from the Cortex-A7 core. See section 5.2.5 for
information about where a UART signal can be measured on the expansion connector.

iMX 6/7/8 Boot Time and Optimization Page 17

Copyright 2020 © Embedded Artists AB Rev A

Figure 4 - Application running on Cortex-M4

5.2.5 UART / TTY pins on expansion connector

Table 7 below lists the UART pins that was used during measurements of wakeup times. The last
column specifies where the signal can be found on the expansion board connected to the COM carrier
board V2.

 Description Expansion board

UART-A_RXD Data sent from console application to Linux (Cortex-
A core). Used to detect when a user presses a key
on keyboard to wake up Linux from sleep mode.

J48-49

UART-A_TXD Data sent from Linux to console application. For
iMX7ULP this pin is used to detect when the Cortex-
A core wakes up.

J48-74

UART-C_RXD UART connected to the Cortex-M4 core on
iMX7ULP. Used to detect when pressing ‘W’ on
keyboard to inform the Cortex-M4 application to
wake up the Cortex-A core.

J48-72

Table 7 - UART pins available on expansion board

iMX 6/7/8 Boot Time and Optimization Page 18

Copyright 2020 © Embedded Artists AB Rev A

6 Hardware related delays
The times listed in chapters 3 and 4 are all relative to the time when the processor starts executing
code. There are delays related to the hardware, such as PMIC power rail sequencing, that occur
before the processor starts executing code. Table 8 below lists delays for cold and warm reset for
respective board. Note that the delays can vary over temperature and individual boards due to
tolerance of on-board reset generators and time bases.

If you need to know the total boot time from a cold/warm reset until the kernel is running you should
take the time below and add to the time listed in chapter 3 above.

 iM
X

8M
 M

in
i

u
C

O
M

iM
X

8M
 N

an
o

u
C

O
M

iM
X

8M
 Q

u
ad

C
O

M

iM
X

6
Q

u
ad

C
O

M

iM
X

6
D

u
al

L
it

e

C
O

M

iM
X

6
S

o
lo

X

C
O

M

iM
X

6
U

lt
ra

L
it

e

C
O

M

iM
X

7
D

u
al

C
O

M

iM
X

7
D

u
al

u
C

O
M

iM
X

7U
L

P

u
C

O
M

Cold reset 65 65 278 584 584 526 537 500 276 515

Warm reset 350 457 251 252 252 200 238 233 134 645

Table 8 - Hardware reset delays (in milliseconds)

6.1 Cold reset

Cold reset is the same as switching on power to the board. The time is measured from valid level on
VIN until positive edge on RESET_OUT.

6.2 Warm reset

Warm reset could be triggered from software or if a reset button is pressed. The time is measured from
positive edge on RESET_IN until positive edge on RESET_OUT (except for the iMX8M Mini/Nano
uCOM where it is negative edge on RESET_IN until positive edge on RESET_OUT).

