iMX 6/7/8 Boot time and optimization

Copyright 2020 © Embedded Artists AB

iIMX 6/7/8 Boot Time
and Optimization

‘ @, Embedded
Artists

iMX 6/7/8 Boot Time and Optimization Page 2

Embedded Artists AB
Jorgen Ankersgatan 12

SE-211 45 Malmo

Sweden

https://www.EmbeddedArtists.com

Copyright 2020 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of
Embedded Artists AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and
specifically disclaim any implied warranties or merchantability or fitness for any particular purpose.
Information in this publication is subject to change without notice and does not represent a
commitment on the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements on this document. Send your comments
by using the contact form: www.embeddedartists.com/contact.

Trademarks

All brand and product names mentioned herein are trademarks, services marks, registered
trademarks, or registered service marks of their respective owners and should be treated as such.

Copyright 2020 © Embedded Artists AB RevA

https://www.embeddedartists.com/

iMX 6/7/8 Boot Time and Optimization Page 3

Table of Contents

1 Document Revision HiStorycccccccceeeieeieeeeeeennns 4
2 INTrodUCtioN ..oooeeeiiee e 5
2.1 Additional doCUMEeNtationcccceeviiiiiiiiiiee e 5
2.2 CONVENTIONS ..tiieiitiie ettt ettt et e ee e e anbeeeeen 5
3 BOOLtIMES ..viiiiiiiiiiiiiiiiiiiiiiiiieeii e 6
3.l SUMMAIY (o 6
3.2 Time points eXplained.........ccccooiiiiiiiiiiiiic e 6
3.2.1 SPL:board init f.i 6
3.2.2 U-boot: board early init f.., 7
3.2.3 U-boot: board 1nit .. 7
3.2.4 U-boot: Starting kernel... ... 7
3.2.5 LINUX: INIEPIOCESS oottt 7
3.2.6 LiNUX: BASIC SEIVICE.....uuuiiiiiiieeiiiiiiee et 7
3.2.7 Linux: LOGIN PromMpPt.....cccoiiiiiiiiiceee e 7
3.3 HOW WaS it MEASUIEAcoiiiiieiiiiie e 7
3.3LL U-DOO. i 7
1R I N o 11 PSSP 8

4 Boot time optimization — iMX8M Mini uCOM 10

4.1 U-boot boot delay......cccvviiiiiiiiiiiiiee e 10
4.2 Silencethe Kernel......ccooiiiiiiiiii e 10
4.3 Simplify boot command.........ccccooiiiiiiiiiiiei e 10
4.4 Increase 12C speed in SPL ... 11
4.5 Disable U-boot functionalitycccuvvveiiiiiiiiiiiiieieeceeee 11
4.6 Disable peripherals in kernel device tree (dtS)ccccvevveeennne 12
4.7 Reduce Kernel Sizecccccoviiiiiiiiiii 13
4.8 Summary of reduced boot time.......c.ccveiiiiiiii 13
5 Sleep mode to runningccoevvvveeieeeeeeeeeeeiiiinnn. 14
5.1 SUMMAINY coiiiiiiiiiii 14
5.2 HOW WaS it MEASUIEdcoivieeiiiiieeiiiie e 15
5.2.1 Shell script toggling GPIOccuviiiiiiiiiiiiiee e 15
5.2.2 GPIO'S A@Nd TTY oottt 15
5.2.3 COMMEANDSoeeiiiiiieiiii et 16
5.2.4 IMXT7ULP UCOM ...cciiiiiiiiiiiie et 16
5.2.5 UART/TTY pins on expansion CONNECONcccvverrreeeerinnnnn 17
6 Hardware related delays.....ccccccccvvvvviiiiiiiiiinnnnnnnn. 18
6.1 COld FESEL. it 18
6.2 WAIM FES ..o 18

Copyright 2020 © Embedded Artists AB RevA

iMX 6/7/8 Boot Time and Optimization Page 4

1 Document Revision History

Revision Date Description
A 2020-10-26 | First release

Copyright 2020 © Embedded Artists AB RevA

iMX 6/7/8 Boot Time and Optimization Page 5

2 Introduction

This document shows the Linux kernel boot time for Embedded Artists i.MX 6/7/8 based COM boards.
There is also a section exploring boot time optimization for the iMX8M Mini uCOM board.

21 Additional documentation
Additional documentation you might need is.

e Bootlin: Boot time optimization
https://bootlin.com/doc/training/boot-time/boot-time-slides.pdf

o Embedded Linux Wiki: A pragmatic guide to boot-time optimization
https://elinux.org/images/6/64/Chris-simmonds-boot-time-elce-2017_0.pdf

2.2 Conventions

A number of conventions have been used throughout to help the reader better understand the content
of the document.

Constant width text —is used for file system paths and command, utility and tool names.

$ This field illustrates user input in a terminal running on the
development workstation, i.e., on the workstation where you edit,
configure and build Linux

This field illustrates user input on the target hardware, i.e.,
input given to the terminal attached to the COM Board

This field is used to illustrate example code or excerpt from a
document.

Copyright 2020 © Embedded Artists AB RevA

https://bootlin.com/doc/training/boot-time/boot-time-slides.pdf
https://elinux.org/images/6/64/Chris-simmonds-boot-time-elce-2017_0.pdf

iMX 6/7/8 Boot Time and Optimization Page 6

3 Boot times

3.1 Summary

The table below lists the boot times measured for the Embedded Artists iMX 6/7/8 COM boards. The
value is number of milliseconds since the processor starts executing after a reset. Each row represents
a time point / measurement point during boot and section 3.2 explains these in more detail.

Please note that this is the times measured during one test run for one specific build for the specific
target. The boot time can naturally change between different runs as well as for different builds. Only
one boot time optimization has been applied and that is the U-boot boot delay set to zero, see section
4.1 below. This optimization was applied to be able to better compare the boot times between the
different boards since the default boot delay can be different for different boards.

Build details:
e Date: 2020-09-17
e Linux:54.24

e U-boot; 2020.04
e meta-ea commit: d5dcc59ee673ad99e99da892f79ce0966f1c3b61

o < ‘9' 2
- = <] - g > a _ _
s = |2 |é¢ |5 |58 |5 |£€ |8 |8 |y
o 52 |55 |3z |o=| o= o= |o=|o= |5 |22
= ZQ |Eg |23 |28 |23 |28 |28 |28 |2¢g |29
SPL: 153 168 275 402 103 127 115 102 93
board_init_f
u-boot: board_ 1364 1030 1250 851 534 504 447 419 418
early_init_f
u-boot: 1597 1243 1518 1024 632 590 529 484 485 889
board_init
u-boot: 2959 | 2682 | 2846 | 2044 1627 1570 1485 1419 1418 | 1697
Starting kernel
Linux: 6084 | 5792 | 6034 | 6434 | 5502 | 5820 | 5235 | 4622 | 5543 | 5447
Init process
Linux: 8021 7760 | 7925 | 10809 | 10595 | 12664 | 17235 | 9419 | 10808 | 17728
Basic service
Linux: 10459 | 12479 | 10643 | 13419 | 13470 | 15961 | 22532 | 12044 | 12965 | 23509
Login prompt

Table 1 - Boot times for COM boards (in milliseconds)

3.2 Time points explained

3.21 SPL:board init £

This is the time when entering into the board init f function in SPL (Secondary Program
Loader). This is basically the first board specific code being executed after a reset. If you need to do
really early initialization of your hardware this is where you can add that code.

Copyright 2020 © Embedded Artists AB RevA

iMX 6/7/8 Boot Time and Optimization Page 7

3.2.2 U-boot: board early init f

This is the time when entering into the board early init f£ function in U-boot. This function is
located in the board specific code, for example, board/embeddedartists/mx8mmea-
ucom/mx8mmea-ucom. c for the IMX8M Mini uCOM board.

3.2.3 U-boot: board init

This is the time when entering into the board init function in U-boot. This function is located in the
board specific code, for example, board/embeddedartists/mx8mmea-ucom/mx8mmea-
ucom. c for the iIMX8M Mini uCOM board.

3.24 U-boot: Starting kernel...

This is the time point where U-boot begins to prepare for booting the Linux kernel. In the console you
will see the output “Starting kernel ...”. This output is available in the function

announce_and cleanupinthefile arch/arm/lib/bootm.c.

3.25 Linux: Init process

This is the time point where the user-space process ‘init' is started. In the console you can look for the
message “Freeing unused kernel” since this is the last message before the init process is started.

This is basically the earliest time where you could have your application started. If you know what you
are doing and your application is independent of the rest of the system you could start your application
here. In general, it is however not recommended to exchange the init process with your application.
3.2.6 Linux: Basic service

This is the time point where a systemd service is started that have been configured to start after the
basic target.

For more information about systemd see: https://www.freedesktop.org/wiki/Software/systemd/.

[Unit]
Description=EA after basic.target
After=basic.target

[Service]

StandardOutput=tty

Type=oneshot

ExecStart=/home/root/myoutput.sh "after basic.target"

[Install]
WantedBy=basic.target

3.2.7 Linux: Login prompt
This is the time point where the login prompt is available and you can login to the console.

NXP i.MX Release Distro 5.4-zeus imx8mmea-ucom ttymxcl

imx8mmea-ucom login:

3.3 How was it measured

3.3.1 U-boot

A logic analyzer was used to detect when a GPIO (pin) was toggled to measure the elapsed time to a
specific point in the U-boot code. The RESET_OUT signal was used as a starting point for the

Copyright 2020 © Embedded Artists AB RevA

https://www.freedesktop.org/wiki/Software/systemd/

iMX 6/7/8 Boot Time and Optimization Page 8

measurement. The signals were measured on the expansion board connected to the COM Carrier
board V2.

B8 Intronix LogicPort Logic Analyzer - C:\Program Files (x86)\LogicPort\Projects\Quickstart.LPF

File Options Setup Acquisition View Help

S HS[EES > P e THEE o R ol | & C S| @ suerroston e B
Sample Rate w 10MHz Logic Threshold w Pre-Trigger Buffer w [Eiix4 Measure

£ > £ > £ > £
Signal “Wire | ‘Wwire | Edge | Cursor
2 D | Status | A 2

RESET_OUT | DO H 0

GPIO D2 L I 0

Feady Acquisition: 1, Samples: B5.9M CLK1 Freq OHz Interval A->B: BEE. 322ms Fate A->B: 1.76678Hz

Table 2 below specifies which GPIO has been used for a specific board when measuring elapsed time.

Processor pin name | Carrier board pin name | Expansion board
iMX8M Mini uCOM GPI0 2.10 GPIO_AJ J48-9
iMX8M Nano uCOM GPIO 2.10 GPIO_AJ J48-9
iMX8M Quad COM GPIO 3.15 GPIO_AF J48-84
iMX6 Quad COM GPI0O 4.08 GPIO_AJ J48-9
iMX6 DualLite COM GPIO 4.08 GPIO_AJ J48-9
iMX6 SoloX COM GPIO 4.27 GPIO_P J48-91
iMX6 UltraLite COM GPIO 4.11 GPIO_P J48-91
iMX7 Dual COM GPIO 2.18 GPIO_AJ J48-9
iMX7 Dual uCOM GPIO 2.18 GPIO_AJ J48-9
iMX7ULP uCOM PTE6 GPIO_AJ J48-9
3.3.2 Linux

In Linux, elapsed time has been measured using timestamps in the console application Tera Term.

Below is part of a log captured by Tera Term. Each line begins with a timestamp that can be used to
calculate elapsed time between different events. For example, the output “Starting kernel” (which
comes from U-boot) is at timestamp 16922 ms and “Freeing unused...” is at 20047 ms meaning that
the elapsed time between these two events is 3125 ms. We also know the time from reset to “Starting
kernel” from the measurement in U-boot, for example, 2959 ms for iMX8M Mini as shown in Table 1.
We can now calculate time from reset to “Freeing unused...” by taking 3125 + 2959 = 6084 ms.

00:00:16.0750] 39710 bytes read in 11 ms (3.4 MiB/s)
00:00:16.0922] 28293632 bytes read in 143 ms (188.7 MiB/s)
00:00:16.0922] ## Flattened Device Tree blob at 43000000
00:00:16.0922]) Booting using the fdt blob at 0x43000000
:16.0922] Loading Device Tree to 000000007d514000, end
00:00:16.0922]

00:00:16.0922] Sstarting kernel ...

00:00:16.0922]

e e R R
e« NoNoNoNoNelNe)
o
o
o
o

—
o
o
o
o
o

:20.0047] [2.801712] Freeing unused kernel memory: 2944K

Copyright 2020 © Embedded Artists AB RevA

iMX 6/7/8 Boot Time and Optimization Page 9

[0 00:00:20.0047] [2.823429] Run /sbin/init as init process

[0 00:00:24.0422] imx8mmea-ucom login:

Capturing a log with timestamps in Tera Term
In Tera Term go to the File menu and then click Log as shown in Figure 2.

In the Log Dialog select where to save the log, click Timestamp in the Option section and also select
Elapsed Time (Logging) in the drop-down menu. This is shown in Figure 3.

[T COM15 - Tera Term VT
File Edit Setup Control Window Help

Mew connection... Alt+N
Duplicate session Alt+D
Cygwin connection Alt+G
Log...

Pause Logging
Comment to Log...
View Log

Show Log dialog...
Stop Logging (Q)

Figure 2 - Tera Term File menu

[Tera Term: Log *

Sparai: Boot time v| (< W

Marmn Senast dndrad &
uuu_imx 7d_ucom_5.4.24_2020-10-02.zip 2020-10-02 16:28

: uuu_imx 7ulp_ucom_5.4.24_2020-09-11.zip 2020-09-11 1336
: uuu_imx8mm_ucom_3.4.24_2020-09-17 zip 2020-09-17 1535
: uuu_imx8mn_ucom_5.4.24_2020-09-10.zip 2020-09-10 13:53
: uuu_imx8meg_com_3.4.24_2020-09-23.zip 2020-09-23 16:20 v

< >
Filamn: | | I Spara I
Fiformat: Al w Avbryt
Hialp
Option
[Binary [J append Blain text

[1did
Timestamp

Elapsed Time (Logging)

Figure 3 - Tera Term Log dialog

Copyright 2020 © Embedded Artists AB RevA

iMX 6/7/8 Boot Time and Optimization Page 10

4 Boot time optimization — iMX8M Mini uCOM

In this chapter we explore some of the methods of reducing the boot time for the iIMX8M Mini uCOM
board. The process would be the same for a different COM board. For more ways to reduce the boot
time you can look at the documentation mentioned in section 2.1 above.

Please note that the methods are explored in the order described below. Applying a method in a
different order could also give a different reduced time for that specific method. For example, if you
would disable peripherals in the device tree before silencing the kernel the amount of reduced time due
to silencing the kernel would most likely be different. This is also the reason why the total reduced boot
time as described in section 4.8 is different from the sum of all times listed in respective section.

41 U-boot boot delay

By default, U-boot has been setup with a boot delay of 2 seconds for the iIMX8M Mini. The reason why
the delay exists is to make it easier to enter into the U-boot console. If you hit any key on your
keyboard before the delay expires you will enter into the console.

From within the U-boot console set the boot delay to zero using the commands below.

§=> setenv bootdelay 0
. => saveenv

Reduced boot time: ~2 seconds.

Note: The values specified in Table 1 in chapter 3 above already include this reduction in
boot time.

4.2 Silence the kernel

The Linux kernel outputs a lot of messages to the console during boot. Outputting characters on a
serial console takes time so reducing the amount will also reduce boot time. It is possible to do this by
setting the kernel boot argument ‘quiet’.

From within the U-boot console add ‘quiet’ to extra bootargs.

§=> setenv extra bootargs quiet
. => saveenv

Reduced boot time: ~3.3 seconds.

Below you can see the amount of time that has been reduced at certain time points.
e Linux: Init process: ~1.9 seconds
e Linux; Basic service: ~3.0 seconds

e Linux: Login prompt: ~3.3 seconds

Note: Silencing the kernel with ‘quiet’ might also suppress error and warning messages.

4.3 Simplify boot command

The default boot command is quite complex and involves checking if devices and files are available. If
they are not trying alternative boot methods. It also involves loading a boot script from eMMC flash. For
a product where we only want to boot from eMMC the boot command can be simplified as below.

Copyright 2020 © Embedded Artists AB RevA

iMX 6/7/8 Boot Time and Optimization Page 11

Note: By doing this simplification we lose the possibility to use extra bootargs. We can
however use the variable args from script instead to set the kernel boot argument
‘quiet’.

. => setenv bootcmd 'mmc dev \${mmcdev}; if run loadimage; then run
- mmcboot; fi;'

§=> setenv args_ from script quiet

‘=> saveenv

Reduced boot time: ~200 milliseconds.

4.4 Increase I12C speed in SPL

SPL is responsible for initializing the DDR RAM. The configuration data used during initialization is
stored in EEPROM accessed via the 12C bus. Reading data from the EEPROM takes some time.

At the time of writing this document the default 12C speed in SPL is 100 kHz. Increasing this to 400
kHz will reduce the time of reading the configuration data.

To be able to increase the 12C speed you have to make two changes.

e CONFIG SYS I2C SPEED: Set this define to 400000 in
include/configs/mx8mmea-ucom. h.

e CONFIG SYS MXC 12Cl SPEED: Set this configuration to 400000 in
configs/mx8mmea-ucom defconfig

Reduced boot time: ~350 milliseconds.

4.5 Disable U-boot functionality

One more way of reducing boot time is by removing functionality that you don’t need. In this example
the following was removed from U-boot.

e Fastboot: This functionality is mainly used by the Universal Update Utility (UUU) when
flashing / programming a target. You can use a separate u-boot used by UUU that still has the
fastboot functionality.

e Video: If your product doesn’t have a display or you don’t need U-boot to show anything on
the display the video functionality can be removed

o Network. If you don’t need network functionality from U-boot this can be removed.

e MMCEnv: Thereis acallto board late mmc env_init inthe board specific code that
dynamically updates the mmcdev and mmcroot variables. This exists to be more flexible of
choosing the mmc device used by U-boot and Linux kernel. In most cases the device is fixed
and cannot be changed so the call to this function can be removed.

The following changes was made in configs/mx8mmea-ucom defconfig. The configurations
below were previously enabled, that is, set to ‘y’.

CONFIG_FASTBOOT=n
CONFIG_USB_FUNCTION FASTBOOT=n
CONFIG_CMD_ FASTBOOT=n
CONFIG_ANDROID BOOT IMAGE=n
CONFIG_FASTBOOT UUU_ SUPPORT=n
CONFIG VIDEO IMX SEC DSI=n
CONFIG DM VIDEO=n

CONFIG_VIDEO ADV7535=n

Copyright 2020 © Embedded Artists AB RevA

iMX 6/7/8 Boot Time and Optimization Page 12

CONFIG SYS WHITE ON BLACK=n
CONFIG_NET=n

The following configurations were removed in include/configs/mx8mmea-ucom.h

/*

#define CONFIG CMD USB_MASS STORAGE
#define CONFIG USB GADGET MASS STORAGE
#define CONFIG USB FUNCTION MASS STORAGE
*/

Remove the call to board late mmc env initinboard/embeddedartists/mx8mmea-
ucom/mx8mmea-ucom. c. The callis done in the function board late init

int board late init(void)

{

#ifdef CONFIG ENV_IS IN MMC

// board late mmc_env_init();
#endif

Reduced boot time: ~480 milliseconds.

4.6 Disable peripherals in kernel device tree (dts)

As for the U-boot, functionality can also be removed from the Linux kernel. The easiest way is to
disable peripherals in the device tree (dts). If a peripheral is disabled the corresponding driver won't be
fully initialized and thereby reducing the boot time. We are not showing the completely modified device
tree file. It was the following functionality that was disabled.

e Audio-related

o Display-related

e Network interface

e FlexSPI

e Unused UART devices
e Unused USDHC devices
o PWM

e GPIO buffer

You disable a peripheral by setting the status in the device tree node to “disabled”. In the excerpt
below you can see how the network interface (fec1 node) is disabled.

&fecl {
pinctrl-names = "default";
pinctrl-0 = <&pinctrl fecl>;
phy-mode = "rgmii-id";

phy-handle = <ðphy0>;

Copyright 2020 © Embedded Artists AB RevA

iMX 6/7/8 Boot Time and Optimization Page 13

fsl,magic-packet;
status = "disabled";

mdio {
#address-cells = <1>;
#size-cells = <0>;

ethphyO: ethernet-phyQ0 {
compatible = "ethernet-phy-ieee802.3-c22";
reg = <0>;
at803x, led-act-blind-workaround;
at803x, eee-okay;
at803x,vddio-1p8v;

Reduced boot time: ~130 milliseconds.

4.7 Reduce kernel size

Loading the kernel from eMMC to RAM takes time. Reducing the size of the kernel can therefore
reduce the boot time. This was tested by removing some functionality in the kernel. The kernel size
shrunk from about 26 Mbyte to about 21 Mbyte. The reduced boot time was in this case only about 50
milliseconds. This option wasn't further explored and is not included in the summary in section 4.8
below.

4.8 Summary of reduced boot time

In Table 3 below we compare the boot time for the unmodified distribution with the one where the
above described optimizations have been applied. As you can see the total boot time from reset to
login prompt has been reduced with about 5.5 seconds (from almost 10.5 seconds to about 5

seconds).
£}
- z | | E
c 2 >
2 T | & |3
@ 2 £ S
£ e 2
£ < <3 @
[=] o 22
SPL: board_init_r 153 153 0
u-boot: board_ early_init_f 1364 | 1013 351
u-boot: board_init 1597 | 1248 349
u-boot: Starting kernel 2959 | 1896 | 1063
Linux: Init process 6084 | 2802 | 3282
Linux: Basic service 8021 3583 | 4438
Linux: Login prompt 10459 | 4927 | 5532

Table 3 - Summary of reduced boot time for iIMX8M Mini uCOM (in milliseconds)

Copyright 2020 © Embedded Artists AB RevA

iMX 6/7/8 Boot Time and Optimization Page 14

5 Sleep mode to running

Besides the boot time it is also of interest to know the time it takes to wake up from a sleep mode

(power-saving mode). This is for example useful if you don’t want to power down the system

completely, but instead set the system into a sleep mode in order to save power.

More information about sleep modes:

https://www.kernel.org/doc/html/v5.4/admin-quide/pm/sleep-states.html

51 Summary

Table 4 below lists the time it takes to wake up from a certain sleep mode for a standard, unmodified
ea-image-base build. The value is number of milliseconds since a trigger point (key pressed on
keyboard) until an application toggling a GPIO starts toggling the GPIO again.

Build details:

Date: 2020-09-17
Linux: 5.4.24
U-boot: 2020.04

e meta-ea commit: d5dcc59ee673ad99e99da892f79ce0966f1c3b61

o | w 2 2
(=} = © 4 > g
3 s |2 |8 |E [T |2 |E |5 |3 |q
5 Z=Q|£2 | £8 |28 |28 |8 |83 |£8|£8|&¢
Standby - - 88 87 95 89 98 94
Suspend-to- 82 15 | 1254 78 82 90 94 83 81 88
Idle
Suspend-to- 96 29 | 1274 94 94 99 89 97 97 | 283
RAM

Table 4 - Sleep mode to running (in milliseconds)

In Table 5 below the USB interface connected to the USB hub on the carrier board has been disabled
(in the device tree file). As you can see the wakeup time is much lower so the USB hub is causing

delays.

o o 2 2
g £ S E K = G = = = o
E = = [e] = = = —
b S= |52 | 8 = S = g = g = 3 = E = E = |22
@ o o o o
5 Z=C|£2 | £E8 |28 |28 |8 |23 |£8|£8|=¢
Standby - - 24 24 26 35 21 25
Suspend-to 17 11 12 17 18 17 9 14
Idle
Suspend-to- 31 21 27 30 30 28 26 28
RAM

Table 5 - Sleep mode to running without USB hub (in milliseconds)

Copyright 2020 © Embedded Artists AB

Rev A

https://www.kernel.org/doc/html/v5.4/admin-guide/pm/sleep-states.html

iMX 6/7/8 Boot Time and Optimization Page 15

5.2 How was it measured

A shell script was created that toggles a GPIO. The board was then configured to wake up via the TTY
(UART) used by the console and then put to sleep with one of the commands described in section
5.2.3 below. When sending a character (by pressing a key on the keyboard) the board was brought up
from sleep and the shell script started running again.

A logic analyzer was used and setup to trigger on a character being sent on the TTY. The time from
this trigger point until the GPIO started to toggle was measured. See section 5.2.5 for information
about where the UART signal can be measured on the expansion connector.

5.2.1 Shell script toggling GPIO

A simple shell script was created that toggles a GPIO as fast as possible. The example below is for the
iMX8M Mini uCOM board and the script begins by setting up the GPIO to use. Table 6 below lists
GPIO’s and TTY’s for all the boards.

#!/bin/bash
echo "Starting"
GPIO 2.10 -> (2-1)*32+10=42

echo 42 > /sys/class/gpio/export
echo high > /sys/class/gpio/gpiocd42/direction

while :
do
echo 0 > /sys/class/gpio/gpiod2/value
echo 1 > /sys/class/gpio/gpiod2/value
done

The application was started by.

§$ chmod a+x myapp.sh
. $./myapp.sh &

522 GPIO’sand TTY

The same GPIO has been used when measuring wakeup time as was used when measuring boot time
as described in section 3.3 and Table 2.

Processor pin name | Linux pin TTY
iMX8M Mini uCOM GPIO 2.10 42 ttymxc1
iMX8M Nano uCOM GPIO 2.10 42 ttymxc1
iMX8M Quad COM GPIO 3.15 79 ttymxcO
iMX6 Quad COM GPIO 4.08 104 ttymxc3
iMX6 DuallLite COM GPIO 4.08 104 ttymxc3
iMX6 SoloX COM GPIO 4.27 123 ttymxc0
iMX6 UltraLite COM GPIO 4.11 107 ttymxc0
iMX7 Dual COM GPIO 2.18 50 ttymxc0
iMX7 Dual uCOM GPIO 2.18 50 ttymxcO

Table 6 - GPIO, pin number and TTY

Copyright 2020 © Embedded Artists AB RevA

iMX 6/7/8 Boot Time and Optimization Page 16

523 Commands
The commands below were run in Linux during measurement.

Activate wakeup from TTY. Change the TTY to the one valid for the board being tested. Below is
valid for the iMX8M Mini uCOM board.

§$ echo enabled > /sys/class/tty/ttymxcl/power/wakeup

Suspend to Standby

$ echo standby > /sys/power/state

Suspend to Idle

$ echo freeze > /sys/power/state

Suspend to RAM

§$ echo mem > /sys/power/state

5.24 iMX7ULP uCOM

The iIMX7ULP processor is different since the Cortex-M4 is the main core while for the other
processors it is the Cortex-A core. Because of this the process of measuring the wakeup time is a bit
different.

The application, that by default, is running on the Cortex-M4 can wake up the Cortex-A7 core. We will
use this feature instead of using wakeup from TTY. See Figure 4 for the menu being presented by the
application running on the Cortex-M4 core. Pressing ‘W’ will wake up the Cortex-A7 core.

The wakeup time is measured as the time between pressing ‘W’ (console connected to Cortex-M4)
and the time when the first character is outputted from the Cortex-A7 core. See section 5.2.5 for
information about where a UART signal can be measured on the expansion connector.

Copyright 2020 © Embedded Artists AB RevA

iMX 6/7/8 Boot Time and Optimization Page 17

T COMI6 - Tera Term VT — O =

File Edit 5Setup Control Window Help
Tazk 1 iz working nou

HCU wakeup zource O=f...
HHHEHHRRHHHEHEEIEERE Pouer Hode Suitch Task HEHRAHHEHHHEHERRAR

Build

e Lo

ead BI70529 R
r dunp all BOY(
Bl

TH.
button.
nhanced pouar conf iqurat ion.

Haiting for pouer nod

525 UART / TTY pins on expansion connector

Table 7 below lists the UART pins that was used during measurements of wakeup times. The last
column specifies where the signal can be found on the expansion board connected to the COM carrier
board V2.

Description Expansion board

UART-A_RXD Data sent from console application to Linux (Cortex- | J48-49
A core). Used to detect when a user presses a key
on keyboard to wake up Linux from sleep mode.

UART-A_TXD Data sent from Linux to console application. For J48-74
iIMX7ULP this pin is used to detect when the Cortex-
A core wakes up.

UART-C_RXD UART connected to the Cortex-M4 core on J48-72
iIMX7ULP. Used to detect when pressing ‘W’ on
keyboard to inform the Cortex-M4 application to
wake up the Cortex-A core.

Copyright 2020 © Embedded Artists AB RevA

iMX 6/7/8 Boot Time and Optimization Page 18

6 Hardware related delays

The times listed in chapters 3 and 4 are all relative to the time when the processor starts executing
code. There are delays related to the hardware, such as PMIC power rail sequencing, that occur
before the processor starts executing code. Table 8 below lists delays for cold and warm reset for
respective board. Note that the delays can vary over temperature and individual boards due to
tolerance of on-board reset generators and time bases.

If you need to know the total boot time from a cold/warm reset until the kernel is running you should
take the time below and add to the time listed in chapter 3 above.

o k=] g ‘g
2% |85 |8z |2z |2z o= 2= ==z |:3 |33
=8| =883 |28|/=28|=8|=8 =8 |=8 |9
Cold reset 65 65| 278 | 584 | 584| 526| 537| 500| 276| 515
Warm reset 350 | 457 | 251 | 252 | 252 | 200 | 238 | 233 | 134 645

Table 8 - Hardware reset delays (in milliseconds)

6.1 Cold reset

Cold reset is the same as switching on power to the board. The time is measured from valid level on
VIN until positive edge on RESET_OUT.

6.2 Warm reset

Warm reset could be triggered from software or if a reset button is pressed. The time is measured from
positive edge on RESET_IN until positive edge on RESET_OUT (except for the iMX8M Mini/Nano
uCOM where it is negative edge on RESET_IN until positive edge on RESET_OUT).

Copyright 2020 © Embedded Artists AB RevA

