

 Working with Linux and U-boot
Copyright 2020 © Embedded Artists AB

Working with Linux

and U-boot

Working with Linux and U-boot Page 2

Copyright 2020 © Embedded Artists AB Rev A

Embedded Artists AB
Jörgen Ankersgatan 12
SE-211 45 Malmö
Sweden

http://www.EmbeddedArtists.com

Copyright 2020 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of
Embedded Artists AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and
specifically disclaim any implied warranties or merchantability or fitness for any particular purpose.
Information in this publication is subject to change without notice and does not represent a
commitment on the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements on this document. Send your comments
by using the contact form: www.embeddedartists.com/contact.

Trademarks

All brand and product names mentioned herein are trademarks, services marks, registered
trademarks, or registered service marks of their respective owners and should be treated as such.

http://www.embeddedartists.com/

Working with Linux and U-boot Page 3

Copyright 2020 © Embedded Artists AB Rev A

Table of Contents
1 Document Revision History 5

2 Introduction ... 6

2.1 Conventions .. 6

3 Boot process ... 7

3.1 Overview ... 7

3.2 Processor boot firmware ... 7

3.2.1 Boot mode register .. 7

3.2.2 GPIO boot ... 7

3.2.3 Fuses... 8

3.3 SPL .. 8

3.4 U-boot .. 8

3.5 Linux .. 9

3.5.1 Initialization manager – systemd ... 9

3.6 Frequently asked questions .. 10

3.6.1 Can I boot from SD/MMC card instead of eMMC? 10

3.6.2 How do I launch an application at startup? 10

4 Device Tree .. 11

4.1 Introduction .. 11

4.2 Data structure format ... 11

4.2.1 Property values ... 13

4.2.2 Aliases ... 13

4.3 Source files and compiler .. 14

4.3.1 Linux .. 14

4.3.2 U-boot.. 14

4.4 Pin muxing .. 15

4.5 Modify device tree from U-boot ... 16

4.5.1 Usage .. 16

4.5.2 Test different commands ... 16

4.5.3 Add to cmd_custom ... 18

4.6 Frequently asked questions .. 18

4.6.1 Do I need to create my own device tree file? 18

4.6.2 How do I create my own device tree file? 18

4.6.3 How do I find the device driver? .. 19

4.6.4 How do I find which properties I can use? 20

4.6.5 Can I modify the device tree without re-compiling? 20

4.6.6 Can I delete a node / property? ... 20

4.6.7 Where do I find more documentation about device tree usage? . 20

5 Customization ... 21

5.1 U-boot .. 21

5.1.1 Board specific files .. 21

Working with Linux and U-boot Page 4

Copyright 2020 © Embedded Artists AB Rev A

5.1.2 Device tree files ... 21

5.1.3 Configuration files .. 22

5.2 Linux .. 23

5.2.1 Kernel configuration .. 23

5.2.2 Device drivers .. 24

6 Miscellaneous ... 25

6.1 Copy files to / from target using SCP ... 25

6.1.1 Allow root to login over SSH .. 25

6.1.2 Get IP address of the target .. 25

6.1.3 Copy file to target .. 25

6.1.4 Copy file from target .. 26

6.1.5 Use SCP on a Windows host .. 26

Working with Linux and U-boot Page 5

Copyright 2020 © Embedded Artists AB Rev A

1 Document Revision History
Revision Date Description

A 2020-06-08 First release

Working with Linux and U-boot Page 6

Copyright 2020 © Embedded Artists AB Rev A

2 Introduction
This document provides you with information and instructions for different topics that are related to the
U-boot bootloader and the Linux kernel.

Additional documentation you might need is.

• The Getting Started document for the board you are using.

• Working with Yocto

2.1 Conventions

A number of conventions have been used throughout to help the reader better understand the content
of the document.

Constant width text – is used for file system paths and command, utility and tool names.

$ This field illustrates user input in a terminal running on the

development workstation, i.e., on the workstation where you edit,

configure and build Linux

This field illustrates user input on the target hardware, i.e.,

input given to the terminal attached to the COM Board

TThhiiss ffiieelldd iiss uusseedd ttoo iilllluussttrraattee eexxaammppllee ccooddee oorr eexxcceerrpptt ffrroomm aa

ddooccuummeenntt..

Working with Linux and U-boot Page 7

Copyright 2020 © Embedded Artists AB Rev A

3 Boot process
3.1 Overview

Figure 1 below illustrates the boot process on a high level.

3.2 Processor boot firmware

When power is turned on or when a reset signal is received the processor will start to execute its boot
firmware (also called boot ROM code). The main purpose of the boot firmware is to load a program
and then run it on the application processor. The firmware determines where to load the program from
by looking at the state of the boot mode register, fuses, and/or GPIOs (General Purpose Input Output
pins).

The boot firmware is on a high level identical between i.MX processors, but can be slightly different on
a more detailed level, for example, different processors might support different boot devices. The
details can be found in NXP’s user’s manual for the processor you are using. For the i.MX 8M Mini
application processor this is described in section 6.1 – System Boot (Rev 2 of the manual).

3.2.1 Boot mode register

The boot firmware begins by checking the state of the boot mode register and will continue its
execution based on this state. On Embedded Artists COM boards, a boot control mechanism
consisting of the signals BOOT_CTRL and ISP_ENABLE has been implemented to configure the boot
mode register. The details of the boot control mechanism can be found in the datasheet of the COM
board you are using, but a short summary is available below.

During the development phase you will most often switch between programming the board via the
Universal Update Utility (UUU) and booting from eMMC flash. This is handled by the ISP_ENABLE
signal and more specifically the J2 jumper on the COM Carrier board. Putting the J2 jumper in a closed
state will enable the serial downloader (USB OTG) boot mode which will allow UUU to program the
board. Putting J2 in opened state will instead enable internal boot which by default has been setup to
boot from eMMC.

If you instead want to boot using fuses you need to put BOOT_CTRL in floating state which is
accomplished by setting the J27 jumper in opened state.

3.2.2 GPIO boot

As mentioned in the previous section the default setup for Embedded Artists COM boards is to boot
from eMMC. This is accomplished by either using switches or zero-ohm resistors to control pins on the
processor so that the boot configuration register is set to select eMMC as boot device. See the
datasheet for the COM board for more details.

Figure 1 - Overview of boot process

Boot firmware

SPL

U-boot

Linux

Init process

1. Boot firmware in processor starts to execute and loads SPL.

2. SPL initializes SDRAM and loads U-boot.

3. U-boot initializes basic hardware, loads device tree and Linux

4. Linux activates peripherals, mounts root file system and runs init

5. Init process starts services and main application

Working with Linux and U-boot Page 8

Copyright 2020 © Embedded Artists AB Rev A

For the i.MX 8M Mini processor GPIO boot overrides is described in chapter 6.1.3.2 in NXP’s User’s
Manual (Rev 2). Similar chapters exist for other processors in their respective manual.

3.2.3 Fuses

Embedded Artists COM boards are normally delivered without any programmed fuses so you as a
customer have full control of these. In an end product it is common, and NXP recommends, to control
the boot process by programming the fuses.

If you want to use fuses you need to set J27 on the COM carrier board in open state.

For the i.MX 8M Mini processor you will find more information in chapters 6.1.3.1 – Boot eFuse
Descriptions and 6.2 - Fusemap in NXP’s User’s Manual (Rev 2). Similar chapters exist for other
processors in their respective manual.

3.3 SPL

As described in section 3.2 a COM board defaults to boot from eMMC flash. The boot firmware will
read an Image Vector Table (IVT) from a fixed offset in the selected boot partition of the eMMC flash.
The offset can be different for different processors as can be seen in Table 1 below. The user’s
manual for the processor specifies the offset for different boot devices. For the i.MX 8M Mini processor
this is described in chapter 6.1.6.1 – Image Vector Table and Boot data in NXP’s User’s Manual (Rev
2).

Processor family IVT offset - eMMC

i.MX6 1 Kbyte

i.MX7 1 Kbyte

i.MX8M and i.MX8M Mini 33 Kbyte

i.MX8M Nano 0, if the image is in boot partition and 32K if it is in user partition

Table 1 - IVT offset for eMMC flash

Information from the IVT will be used to load the remainder of the image and also where it should be
loaded (internal RAM in this case).

For the default setup of an Embedded Artists COM board this image will be SPL (short for Secondary
Program Loader). SPL is part of the U-boot source code and can be seen as a small subset of U-boot.
The U-boot itself would in normal cases be too big to be loaded to internal RAM and that is why a
subset is used. When SPL is built the IVT will also be generated and added at the beginning of the
final SPL image.

SPL will be responsible for initializing the external RAM, load the U-boot to external RAM and then
hand over execution to U-boot.

Board specific SPL code is available in a file called spl.c located in the board directory, see link

below for the iMX8M Mini uCOM board.

https://github.com/embeddedartists/uboot-imx/blob/ea_v2018.03/board/embeddedartists/mx8mmea-
ucom/spl.c

3.4 U-boot

The bootloader used for Embedded Artists COM boards is U-boot, also known as Universal Boot
Loader or Das U-Boot. This is an open-source bootloader commonly used on many different
architectures and platforms.

http://www.denx.de/wiki/U-Boot

U-boot’s main responsibility is to load the Linux kernel, select and load the device tree (see Chapter
4 below) and hand it over the device tree to the kernel. In order to do this the U-boot has to do some

https://github.com/embeddedartists/uboot-imx/blob/ea_v2018.03/board/embeddedartists/mx8mmea-ucom/spl.c
https://github.com/embeddedartists/uboot-imx/blob/ea_v2018.03/board/embeddedartists/mx8mmea-ucom/spl.c
http://www.denx.de/wiki/U-Boot

Working with Linux and U-boot Page 9

Copyright 2020 © Embedded Artists AB Rev A

initial hardware initialization such as basic processor (CPU) setup, initialize clocks and timers, initialize
console, optionally the display and board specific initialization. Table 2 highlights some of the functions
part of the initialization flow.

_main arm/lib/crt0.S

arm/lib/crt0_64.S
Main function called by C runtime.

board_init_f common/board_f.c Prepares the hardware for execution. Will for
example call arch_cpu_init to initialize

CPU, but also the board specific function
board_early_init_f.

board_init_r common/board_r.c SDRAM is initialized and global variables are
available when this function is called. SDRAM is
initialized. It will call functions such as
board_init, initr_mmc,

console_init_r and finally

run_main_loop.

main_loop common/main.c It is in this function U-boot will start to process
commands, such as the commands defined in
the U-boot environment. For auto booting U-boot
will run the command(s) defined in the
configuration variable CONFIG_BOOTCOMMAND

https://github.com/embeddedartists/uboot-
imx/blob/ea_v2018.03/include/configs/mx8mmea-
ucom.h#L213

Table 2 - Highlighted initialization functions

3.5 Linux

Linux is the main operating system on Embedded Artists COM boards. It is an open-source kernel
widely used on many embedded devices.

The Linux kernel will use the device tree provided by the U-boot to activate peripherals and load device
drivers. Finally, it will mount a root file system and hand over execution to the init process. The init
process can be seen as the parent of all other processes in Linux. It will for example start background
processes, the console, and optionally a main application. All of this is handled via an initialization
manager.

At the time of writing this document the default initialization manager used with Embedded Artists Linux
distribution is systemd. Previously it used to be SysV (System V Init).

3.5.1 Initialization manager – systemd

Systemd is a suite of components that is used to initialize and configure a Linux system. There are
utility applications used to monitor and control the system and there are init scripts for the different
services within the system.

We won’t go into any detail of all the aspects of systemd. There are several useful resources available
and below are a few of these.

• https://en.wikipedia.org/wiki/Systemd

• https://www.linux.com/training-tutorials/understanding-and-using-systemd/

• https://www.freedesktop.org/wiki/Software/systemd/

https://github.com/embeddedartists/uboot-imx/blob/ea_v2018.03/include/configs/mx8mmea-ucom.h#L213
https://github.com/embeddedartists/uboot-imx/blob/ea_v2018.03/include/configs/mx8mmea-ucom.h#L213
https://github.com/embeddedartists/uboot-imx/blob/ea_v2018.03/include/configs/mx8mmea-ucom.h#L213
https://en.wikipedia.org/wiki/Systemd
https://www.linux.com/training-tutorials/understanding-and-using-systemd/
https://www.freedesktop.org/wiki/Software/systemd/

Working with Linux and U-boot Page 10

Copyright 2020 © Embedded Artists AB Rev A

3.6 Frequently asked questions

3.6.1 Can I boot from SD/MMC card instead of eMMC?

It depends on what you mean by booting and what you want to put on the SD/MMC card. There are
instructions in the Embedded Artists document “Working with Yocto” that show you how to put the root
file system on an SD/MMC card.

You would have to modify the hardware or burn fuses, see section 3.2.3 if you would like to use
something other than eMMC as primary boot device. Our recommendations are however to keep using
eMMC as primary boot device.

3.6.2 How do I launch an application at startup?

This is a question related to systemd as described in section 3.5.1 above. You need to create a service
file, for example, myapplication.service that you put in /etc/systemd/system. Below is

an example how this file could look like.

[[UUnniitt]]

DDeessccrriippttiioonn==LLaauunncchh mmyy aapppplliiccaattiioonn

AAfftteerr==mmuullttii--uusseerr..ttaarrggeett

[[SSeerrvviiccee]]

TTyyppee==ssiimmppllee

EExxeeccSSttaarrtt==//uussrr//bbiinn//mmyyaapppplliiccaattiioonn

[[IInnssttaallll]]

WWaanntteeddBByy==mmuullttii--uusseerr..ttaarrggeett

Enable the service by using systemctl so that it starts at next boot. You can also start it using

systemctl.

systemctl enable myapplication.service

systemctl start myapplication.service

Working with Linux and U-boot Page 11

Copyright 2020 © Embedded Artists AB Rev A

4 Device Tree
4.1 Introduction

The device tree is a data structure used for describing hardware. Take a Computer-on-Module (COM)
such as the iMX8M Mini uCOM board as an example. It consists of several hardware devices
(peripherals) such as i.MX 8M Mini application processor, LPDDR4 memory, eMMC flash, Ethernet
PHY, and Power Management IC (PMIC), see Figure 2 for a block diagram.

The iMX8M Mini uCOM board is then used in combination with a carrier board such as the COM
Carrier board v2 used in a Developer’s Kit. This carrier board adds more peripherals and especially
interfaces such as UART, USB, PCIe, SD card, audio codec, and more. To be even more specific the
i.MX 8M application processor in itself also contains several peripherals such as I2C, SPI, PCIe, MIPI-
DSI, memory buses, and more.

To be able to use a hardware device within an operating system, (we will use Linux kernel as
example), a device driver is needed. The driver needs to be initialized to work with the specific
hardware / board configuration. This could for example be a device address (if attached to a bus), pin
configuration, clock to assign to the device, and so on.

Before device trees, the Linux kernel often contained the board specific code, such as the address of
the device. This meant that the kernel had to be re-compiled when something hardware specific had to
be changed. Take the PMIC as an example. This device is attached to the I2C bus at a specific I2C
address (0x4B) and if the address had to be changed a new kernel had to be compiled. Another, but
related problem, is if you offer different configurations of your product. In this case you had to provide
different Linux kernels for each configuration in the case when the kernel contained board specific
code.

The device tree solves these problems by moving board / device specific code out of the kernel and
into the device tree file. This file can then be maintained and compiled separate from the kernel which
will make the kernel more portable across different boards. In the example of using the Linux kernel
the device tree will typically be loaded by the U-boot bootloader.

It is important to note that a device tree won’t be needed for discoverable devices such as devices
attached to a USB bus. The USB protocol has been designed to be able to detect if a device is
attached and then probe that device for information that is given to the device driver.

4.2 Data structure format

The data structure can be seen as a tree structure with nodes and properties. Each node (except the
root node) has one parent in the tree. A node contains a list of properties, which are key-value pairs,

Figure 2 - iMX8M Mini uCOM block diagram

NXP i.MX 8M Mini

with quad-core ARM
Cortex-A53 / Cortex-M4F
@up to 1.8 GHz / 400 MHz

LPDDR4 Memory
(32 bit data bus)

PMIC
4.2V input

I2C#0

2x DF40C-100 and 2x DF40C-40 connectors (280 pins)

Gigabit Ethernet-PHY

eMMC Flash

Optional
Wi-Fi/BT

Parameter
storage

SD3

Boot
control

SD1

Working with Linux and U-boot Page 12

Copyright 2020 © Embedded Artists AB Rev A

and can also contain child nodes. This kind of structure makes it quite easy for a human to read and
understand how the hardware is organized.

The latest device tree specification can be found at https://www.devicetree.org/specifications/.

Figure 3 shows an example of a node that describes an I2C bus. In this example the node has been
assigned a label (i2c1). This label can be used to reference the node from other parts of the device

tree (instead of referencing the node name). The node name must be unique and should describe the
general class of the device. In the example below the node name (i2c@30a20000) consists of a

name (i2c) followed by a unit-address (@30a20000). The unit-address is omitted if there is no

address associated with the device. In the example below you can see that the unit-address is also
specified in the reg property.

One important property is the status property. Below you can see that it is set to disabled which

means that the device won’t be activated in the kernel.

Figure 4 shows an example where the i2c1 node is referenced and properties added and changed.

The status property is for example set to okay meaning that the I2C1 bus is activated. A child node

(pmic) is added to the node since the actual PMIC device is attached to the I2C1 bus on the iMX8M

Mini uCOM board. For the PMIC device you can see that the I2C address is 0x4b (both set in the unit-
address field and the reg property).

Figure 3 – Example of a device tree node

i2c1: i2c@30a20000 {

 #address-cells = <1>;

 #size-cells = <0>;

 compatible = "fsl,imx8mm-i2c", "fsl,imx21-i2c";

 reg = <0x0 0x30a20000 0x0 0x10000>;

 interrupts = <GIC_SPI 35 IRQ_TYPE_LEVEL_HIGH>;

 clocks = <&clk IMX8MM_CLK_I2C1_ROOT>;

 status = "disabled";

};

label

node name

property

https://www.devicetree.org/specifications/

Working with Linux and U-boot Page 13

Copyright 2020 © Embedded Artists AB Rev A

4.2.1 Property values

As previously mentioned, properties consist of key-value pairs and the key (the property name) is a
string of 1 to 31 characters. The value can however be of different types.

• Empty value. This indicates a true / false property and only contains the property name.

o enable-active-high;

• String value.

o status = "okay";

• String list. Strings are separated with comma (‘,’).

o compatible = "rohm,bd71840", "rohm,bd71837";

• Cell property array. The format is specific to the property. Below are two examples where the
reg property contains one hexadecimal integer value, while the gpio_intr property

contains one reference to another node and two integer values.

o reg = <0x4b>;

o gpio_intr = <&gpio1 3 GPIO_ACTIVE_LOW>;

• Binary data. The data is delimited with square brackets.

o local-mac-address = [00 1A F1 01 04 15];

4.2.2 Aliases

There is a special node in the device tree called aliases. This node can be used to assign a short

alias to a full node path. This alias can then be used within the Linux kernel or U-boot when accessing
a node instead of using the full path to the node. Aliases are not used within the device tree source
(.dts) to reference a node. Instead, labels are used within the device tree source.

The example below, which is from imx8mm.dtsi can look quite confusing since for example the

alias i2c0 reference i2c1. The right-hand side is however in this case a label as illustrated in Figure

Figure 4 – Continued example of device tree nodes

&i2c1 {

 clock-frequency = <400000>;

 pinctrl-names = "default";

 pinctrl-0 = <&pinctrl_i2c1>;

 status = "okay";

 pmic: bd71837@4b {

 reg = <0x4b>;

 compatible = "rohm,bd71840", "rohm,bd71837";

 /* PMIC BD71837 PMIC_nINT GPIO1_IO3 */

 pinctrl-0 = <&pinctrl_pmic>;

 gpio_intr = <&gpio1 3 GPIO_ACTIVE_LOW>;

 gpo {

 rohm,drv = <0x0C>;

 };

...

Referenced
node

Child node

Working with Linux and U-boot Page 14

Copyright 2020 © Embedded Artists AB Rev A

2 and means that the alias i2c0 will have the value /i2c@30a20000, i.e., the full path to the I2C

node.

 aalliiaasseess {{

 eetthheerrnneett00 == &&ffeecc11;;

 ii22cc00 == &&ii22cc11;;

 ii22cc11 == &&ii22cc22;;

 ii22cc22 == &&ii22cc33;;

 ii22cc33 == &&ii22cc44;;

 sseerriiaall00 == &&uuaarrtt11;;

......

The complete alias section for the iMX8M Mini uCOM can be seen by following the link below.

https://github.com/embeddedartists/linux-imx/blob/ea_4.14.98/arch/arm64/boot/dts/freescale/fsl-
imx8mm.dtsi#L30

4.3 Source files and compiler

There are two types of source files used for device trees.

• .dtsi – includable device tree file. This file is not considered a standalone device tree, but

instead it is included in either another .dtsi file or in a .dts file that will complete the device

tree. These types of files are typically used when describing the application processor, such
as fsl-imx8mm.dtsi for the i.MX 8M Mini application processor.

• .dts – This is a standalone device tree that can be compiled into a binary file (.dtb).

Please note that a .dts file can include another .dts file. The file to include doesn’t have to

be a .dtsi file.

A device tree source file is compiled into a binary device tree (.dtb) by using the device tree compiler

(dtc). Most often you won’t use this compiler directly, but instead build the .dtb files within the Linux

kernel. In this case you will use the dtbs target.

$ make dtbs

4.3.1 Linux

Within the Linux kernel the device tree files are available under the arch directory. Below you can see

the exact location (for version 4.14.98) depending on which target you are using.

iMX6 and iMX7:

https://github.com/embeddedartists/linux-imx/tree/ea_4.14.98/arch/arm/boot/dts

iMX8:

https://github.com/embeddedartists/linux-imx/tree/ea_4.14.98/arch/arm64/boot/dts/freescale

4.3.2 U-boot

Within the U-boot bootloader the device tree files are available under the arch/dts directory. Below

you can see the exact location (for version 2018.03).

https://github.com/embeddedartists/uboot-imx/tree/ea_v2018.03/arch/arm/dts

https://github.com/embeddedartists/linux-imx/blob/ea_4.14.98/arch/arm64/boot/dts/freescale/fsl-imx8mm.dtsi#L30
https://github.com/embeddedartists/linux-imx/blob/ea_4.14.98/arch/arm64/boot/dts/freescale/fsl-imx8mm.dtsi#L30
https://github.com/embeddedartists/linux-imx/tree/ea_4.14.98/arch/arm/boot/dts
https://github.com/embeddedartists/linux-imx/tree/ea_4.14.98/arch/arm64/boot/dts/freescale
https://github.com/embeddedartists/uboot-imx/tree/ea_v2018.03/arch/arm/dts

Working with Linux and U-boot Page 15

Copyright 2020 © Embedded Artists AB Rev A

4.4 Pin muxing

A pin on an i.MX application processor may have more than one function, that is, it can be connected
to more than one internal peripheral (but only one at a time). The selection of pin function is handled by
an input-output multiplexer usually called IOMUX. Besides selecting which function to use the
multiplexer is also used to configure other characteristics such as drive strength, hysteresis, open
drain, pull-up/pull-down, and so on.

Pin muxing is handled in the device tree in a node called iomuxc. In this node you configure a pin

within a child node that must contain the property fsl,pins with a value consisting of several cells.

If we take the I2C node in Figure 4 as example you can see that it has a property called pinctrl-0

that has a reference to a node called pinctrl_i2c1. The node pinctrl_i2c1 is a child node to

iomuxc.

ppiinnccttrrll--00 == <<&&ppiinnccttrrll__ii22cc11>>;;

Below is the pinctrl_i2c1 node with the fsl,pins property and a list of two pins being

configured. The first part of a row is a pre-processor macro that will be expanded to several cells. For
the i.MX 8M Mini this macro is defined in include/dt-bindings/pinctrl/pins-

imx8mm.h. For i.MX6 and i.MX7 corresponding files are located in arch/arm/boot/dts. In

general, you don’t need to know the exact values set in the macro, but only how to interpret the name
of the macro since a specific naming convention is being used.

The name consists of three parts:

• MX8MM_IOMUX: A prefix which should be unique and usually identifies the processor.

• I2C1_SCL: The pad name (in the NXP manual it is usually referred to as a pad instead of a

pin) on the processor which normally is the same as the main function of the pad.

• I2C1_SCL: The function the pad should get. In this example this is the same as the pad

name, but if you look in pins-imx8mm.h you can see that it could have been set to for

example GPIO5_IO14 if you wanted it to be configured to be a GPIO.

ppiinnccttrrll__ii22cc11:: ii22cc11ggrrpp {{

 ffssll,,ppiinnss == <<

 MMXX88MMMM__IIOOMMUUXXCC__II22CC11__SSCCLL__II22CC11__SSCCLL 00xx440000000011cc33

 MMXX88MMMM__IIOOMMUUXXCC__II22CC11__SSDDAA__II22CC11__SSDDAA 00xx440000000011cc33

 >>;;

}};;

The second part of a row is a hexadecimal value that sets the pad control registers – the
characteristics of the pad. The user’s manual for the processor must be consulted to interpret this
value. If we continue with the I2C example for the i.MX 8M Mini processor and look in the manual (Rev
2 was used when writing this document) we can find a description of the control register in section
8.2.5.283 – Pad Control Register (IOMUXC_SW_PAD_CTL_PAD_I2C1_SCL).

The table from that section is replicated below and a third column has been added with a description of
the specific value used for the I2C1_SCL pad.

Field Description I2C1_SCL value

31-9
-

This field is reserved -

8
PE

Pull resistors enable field

0 = Disable pull resistors

1 = Enable pull resistors

Working with Linux and U-boot Page 16

Copyright 2020 © Embedded Artists AB Rev A

1 = Enable pull resistors

7
HYS

Hysteresis enable field

0 = Select CMOS input
1 = Select Schmitt input

1 = Schmitt input

6
PUE

0 = Select pull-down resistors
1 = Select pull-up resistors

1 = Pull-up resistors enabled

5
ODE

Open drain enable field

0 = Disable open drain mode
1 = Enable open drain mode

0 = Open drain disabled

4-3
FSEL

Slew rate field (lsb field not used hence the X below)

0X – Select slow slew rate (SR=1)
1X – Select fast slew rate (SR=0)

00 = Slow slew rate

2-0 Drive strength field (lsb field not used hence the X below)

00X – Drive strength X1
10X – Drive strength X2
01X – Drive strength X4
11X – Drive strength X6

011 = Drive strength X4

Table 3 - I2C1_SCL pad control register

4.5 Modify device tree from U-boot

The U-boot is responsible for loading the device tree and providing it to the Linux kernel. The U-boot
also has the fdt command that can be used to parse and modify the device tree before it is provided

to Linux. By using the fdt command, you can make temporary changes to the device tree without

having to modify and re-compile the .dts file.

4.5.1 Usage

From within the U-boot console run the command below to get a description of which fdt commands

that are available.

=> help fdt

Usage:

fdt addr [-c] <addr> [<length>] - Set the [control] fdt location to

<addr>

fdt boardsetup - Do board-specific set up

fdt systemsetup - Do system-specific set up

fdt move <fdt> <newaddr> <length> - Copy the fdt to <addr> and make it

active

...

The commands that you will most often use are print, set, rm and possibly mknod.

4.5.2 Test different commands

This section describes how you can test some of the fdt commands.

Load the device tree

The device tree must be loaded before you can modify it. Do this by setting skip_booting and

then running boot.

Working with Linux and U-boot Page 17

Copyright 2020 © Embedded Artists AB Rev A

=> setenv skip_booting yes

=> boot

switch to partitions #0, OK

mmc1(part 0) is current device

1492 bytes read in 7 ms (208 KiB/s)

Running bootscript from mmc ...

Executing script at 40480000

39658 bytes read in 9 ms (4.2 MiB/s)

!!!! Selected to skip booting !!!!

!!!! Unset skip_booting variable to enable booting again !!!!

Print the device tree

When the device tree has been loaded you can inspect it by using fdt print. You enter a path to

the part of the tree you want to print. If you want to see the entire tree you print the root (‘/’). You can
also use fdt list if you just want to print one level of nodes, for example, all children just beneath

the root, but not any of the child nodes children.

Since the device tree is usually quite large it is better to only print the part you are interested in. You
need to specify the complete path to the node or if an alias exist use that alias. If we take the I2C node
described in section 4.2 and list its content it looks like below. The I2C node is available directly under
the root node.

=> fdt list /i2c@30a20000

i2c@30a20000 {

 #address-cells = <0x00000001>;

 #size-cells = <0x00000000>;

 compatible = "fsl,imx8mm-i2c", "fsl,imx21-i2c";

 reg = <0x00000000 0x30a20000 0x00000000 0x00010000>;

 interrupts = <0x00000000 0x00000023 0x00000004>;

 clocks = <0x00000004 0x000000a4>;

 status = "okay";

 clock-frequency = <0x00061a80>;

 pinctrl-names = "default";

 pinctrl-0 = <0x0000001b>;

 bd71837@4b {

 };

 at24@55 {

 };

 wm8731@1a {

 };

};

You can get the same result by using the alias i2c0. See section 4.2.2 for information about aliases.

=> fdt list i2c0

...

Change the value of a property

Use fdt set to change the value of a property. In this example we will deactivate the audio codec

(wm8731) which we could see as a child node to i2c@30a20000 in the example above.

=> fdt set /i2c@30a20000/wm8731 status "disabled"

Boot Linux with the modified device tree

Working with Linux and U-boot Page 18

Copyright 2020 © Embedded Artists AB Rev A

If you want to test the modifications you have done you cannot run just boot since this would mean

that the device tree would be re-loaded. Instead you need to run some of the individual commands part
of the boot process. In most cases this involves loading the image, setting the mmc arguments and
then issuing the boot command. Which boot command to use can differ (booti or bootz) for

different boards, but you can find it by inspecting the bootcmd variable. For the iMX8M Mini uCOM it

looks like below.

=> run loadimage

=> run mmcargs

=> booti ${loadaddr} - ${fdt_addr}

4.5.3 Add to cmd_custom

If you want the modification of the device tree to be more permanent, that is, it should be done for
consecutive boots without having to manually enter the fdt commands, you can add the changes to

the cmd_custom variable.

=> setenv cmd_custom fdt set /i2c@30a20000/wm8731 status "disabled"

=> saveenv

If you need to run several fdt commands you can separate them with a semicolon (‘;’).

4.6 Frequently asked questions

4.6.1 Do I need to create my own device tree file?

If you are developing your own product by using one of Embedded Artists COM boards you will most
likely need to develop your own carrier board. Your carrier board will contain the specific peripherals
and interfaces needed by your product. This mean that you have to use your own .dts file that

defines the peripherals you are using.

4.6.2 How do I create my own device tree file?

The recommendation is that you start with one of the files (there can be more than one) that has been
created for the Embedded Artists Developer’s Kit you are using, for example, fsl-imx8mm-ea-

ucom-kit_v2.dts if you are using iMX8M Mini uCOM.

1. Copy our .dts file and give it a new name for your product.

2. Modify your file so it matches your hardware. This usually involves removing nodes that you
don’t need, but also adding new nodes for peripherals that are new and specific to your
hardware.

3. Add the new .dts file to the Makefile so that it will be built. Below is a link to the

Makefile used for fsl-imx8mm-ea-ucom-kit_v2.dts

a. https://github.com/embeddedartists/linux-
imx/blob/ea_4.14.98/arch/arm64/boot/dts/freescale/Makefile#L142

4. The U-boot environment has a variable named fdt_file that defines which .dtb file to

load. You have to either update this variable dynamically using setenv or change the

default setting in the U-boot source code.

a. Change dynamically in U-boot environment:

=> setenv fdt_file fsl-imx8mm-my_device.dtb

=> saveenv

https://github.com/embeddedartists/linux-imx/blob/ea_4.14.98/arch/arm64/boot/dts/freescale/Makefile#L142
https://github.com/embeddedartists/linux-imx/blob/ea_4.14.98/arch/arm64/boot/dts/freescale/Makefile#L142

Working with Linux and U-boot Page 19

Copyright 2020 © Embedded Artists AB Rev A

b. Change default values statically in U-boot source. The link below shows where and
how it is configured for iMX8M Mini uCOM. It is done in a similar way for the other
COM boards.

https://github.com/embeddedartists/uboot-
imx/blob/ea_v2018.03/include/configs/mx8mmea-ucom.h#L166

5. If you want your new file to be included in a Yocto image you must update the machine file.
The link below goes to the machine file for the iMX8M Mini uCOM board. It is similar for the
other COM boards.

https://github.com/embeddedartists/meta-ea/blob/ea-4.14.98/conf/machine/imx8mmea-
ucom.conf#L22

6. If you want the new file to be copied to the target when running the UUU tool you must update
the uuu scripts (can be downloaded from http://imx.embeddedartists.com). The example
below is from the full_tar.uuu file for the iMX8M Mini uCOM board.

CCooppyy kkeerrnneell aanndd ddttbb ffiilleess

FFBBKK:: uuccpp ffiilleess//IImmaaggee--iimmxx88mmmmeeaa--uuccoomm..bbiinn tt:://mmnntt//ffaatt//IImmaaggee

FFBBKK:: uuccpp ffiilleess//ffssll--iimmxx88mmmm--eeaa--uuccoomm--kkiitt__vv22..ddttbb tt:://mmnntt//ffaatt

FFBBKK:: uuccpp ffiilleess//ffssll--iimmxx88mmmm--eeaa--uuccoomm--kkiitt__vv22--11mmww..ddttbb tt:://mmnntt//ffaatt

FFBBKK:: uuccpp ffiilleess//ffssll--iimmxx88mmmm--eeaa--uuccoomm--kkiitt__vv22--mm44..ddttbb tt:://mmnntt//ffaatt

FFBBKK:: uuccpp ffiilleess//ffssll--iimmxx88mmmm--eeaa--uuccoomm--kkiitt__vv22--ppcciiee..ddttbb tt:://mmnntt//ffaatt

FFBBKK:: uuccpp ffiilleess//bboooott..ssccrr tt:://mmnntt//ffaatt

FFBBKK:: uuccmmdd uummoouunntt //mmnntt//ffaatt

4.6.3 How do I find the device driver?

Given a node in the device tree, how do I find the associated device driver in the Linux kernel? The
short answer is that you need to look at the compatible property and find a driver that match one of the
strings in the string list.

Let’s take the PMIC node shown in Figure 4 as an example. The compatible property looks like below.

ccoommppaattiibbllee == ""rroohhmm,,bbdd7711884400"",, ""rroohhmm,,bbdd7711883377"";;

There are two strings in the string list indicating that the same driver could be used for several versions
of the PMIC. In the Linux kernel source directory search for one of these strings. As you can see below
the string can be found in mfd/bd7183.c.

$ cd linux-imx/drivers

$ grep -r "rohm,bd71840" *

mfd/bd71837.c: { .compatible = "rohm,bd71840", .data = (void *)0},

If you open this file you can see the device table below which lists both "rohm,bf71837" and

"rohm,bd71840" as compatible devices. Note that only one of the strings in the compatible

property must match a string in the device table. In this example both string were included in the table.

ssttaattiicc ssttrruucctt ooff__ddeevviiccee__iidd bbdd7711883377__ooff__mmaattcchh[[]] == {{

 {{ ..ccoommppaattiibbllee == ""rroohhmm,,bbdd7711883377"",, ..ddaattaa == ((vvooiidd **))00}},,

 {{ ..ccoommppaattiibbllee == ""rroohhmm,,bbdd7711884400"",, ..ddaattaa == ((vvooiidd **))00}},,

 {{ }},,

}};;

https://github.com/embeddedartists/uboot-imx/blob/ea_v2018.03/include/configs/mx8mmea-ucom.h#L166
https://github.com/embeddedartists/uboot-imx/blob/ea_v2018.03/include/configs/mx8mmea-ucom.h#L166
https://github.com/embeddedartists/meta-ea/blob/ea-4.14.98/conf/machine/imx8mmea-ucom.conf#L22
https://github.com/embeddedartists/meta-ea/blob/ea-4.14.98/conf/machine/imx8mmea-ucom.conf#L22

Working with Linux and U-boot Page 20

Copyright 2020 © Embedded Artists AB Rev A

4.6.4 How do I find which properties I can use?

When you need to add a new node in the device tree for a new hardware device you also need to
know which properties to use.

The first step is to try to find already existing device tree files using the same kind of device. Search for
the device in the kernel sources. If you find existing examples you can use this as a starting point, but
should also double-check the actual device driver since the examples could be out-dated.

Find the device driver as described in section 4.6.3 and open that file. Look for functions beginning
with of_ such as of_property_read_u32 or of_get_named_gpio.

For mfd/bd71837.c that was given as an example in section 4.6.3 you can find such functions in

bd71837_parse_dt, see below for an excerpt where the gpio_intr property is retrieved.

bbooaarrdd__iinnffoo-->>ggppiioo__iinnttrr == ooff__ggeett__nnaammeedd__ggppiioo((nnpp,, ""ggppiioo__iinnttrr"",, 00));;

iiff ((!!ggppiioo__iiss__vvaalliidd((bbooaarrdd__iinnffoo-->>ggppiioo__iinnttrr)))) {{

 ddeevv__eerrrr((&&cclliieenntt-->>ddeevv,, ""nnoo ppmmiicc iinnttrr ppiinn aavvaaiillaabbllee\\nn""));;

 ggoottoo eerrrr__iinnttrr;;

}}

4.6.5 Can I modify the device tree without re-compiling?

See section 4.4 for a way to do this from within the U-boot console.

4.6.6 Can I delete a node / property?

Yes, if you want to delete an already defined node or a property from a new .dts file you can do this

by /delete-node/ or /delete-property/, see below for examples.

&&ggppiioo11 {{

 //ddeelleettee--nnooddee// ssdd11__vvsseelleecctt__ggppiioo;;

}};;

&&ggppiioo__bbuuffff {{

 hhoogg__DDIIRR__WWLL__DDEEVV__WWAAKKEE {{

 ggppiioo--hhoogg;;

 ggppiiooss == <<99 00>>;;

 //ddeelleettee--pprrooppeerrttyy// oouuttppuutt--llooww;;

 oouuttppuutt--hhiigghh;;

 }};;

}};;

4.6.7 Where do I find more documentation about device tree usage?

The links below contain a lot of useful information about device trees.

• https://elinux.org/Device_Tree_Usage

• https://elinux.org/Device_Tree_Mysteries

• https://elinux.org/Device_Tree_Source_Undocumented

https://elinux.org/Device_Tree_Usage
https://elinux.org/Device_Tree_Mysteries
https://elinux.org/Device_Tree_Source_Undocumented

Working with Linux and U-boot Page 21

Copyright 2020 © Embedded Artists AB Rev A

5 Customization
5.1 U-boot

Most projects can use the Embedded Artists U-boot with little or no modification. The most common
modification is to change the default .dtb file that will be loaded. Some projects might need additional

early initialization of hardware and will put this in the board specific file of the U-boot.

5.1.1 Board specific files

If modification is needed it can in most cases be limited to changes in the board specific file which is
located in a sub-directory to <uboot-dir>/board/embeddedartists. Table 4 lists board

specific files for the different COM boards.

https://github.com/embeddedartists/uboot-imx/tree/ea_v2018.03/board/embeddedartists

COM board Board specific file

iMX6 UltraLite COM mx6ulea-com/mx6ulea-com.c

iMX6 SoloX COM mx6sxea-com/mx6sxea-com.c

iMX6 Quad mx6qea-com/mx6qea-com.c

iMX6 DualLite COM mx6qea-com/mx6qea-com.c

iMX7 Dual COM mx7dea-com/mx7dea-com.c

iMX7 Dual uCOM mx7dea-com/mx7dea-com.c

iMX7ULP uCOM mx7ulpea-ucom/mx7ulpea-ucom.c

iMX8M Nano uCOM mx8mmea-ucom/mx8mmea-ucom.c

iMX8M Mini uCOM mx8mnea-ucom/mx8mnea-ucom.c

iMX8M COM mx8mqea-com/mx8mqea-com.c

Table 4 - U-boot board specific files

5.1.2 Device tree files

The U-boot is also utilizing device tree files like the Linux kernel. The support for device trees is
however (for version 2018.03) not as extensive as it is for the Linux kernel. Not all drivers have full
support for device trees. If you need to change initialization of a peripheral or add a new peripheral that
should be initialized in the U-boot you might also need to modify the device tree file used in the U-boot.

Device tree files are located in the directory <uboot-dir>/arch/arm/dts.

https://github.com/embeddedartists/uboot-imx/tree/ea_v2018.03/arch/arm/dts

Table 5 lists the device trees used for Embedded Artists COM boards.

COM board Device tree file

iMX6 UltraLite COM imx6ulea-com-kit.dts

iMX6 SoloX COM imx6sxea-com-kit.dts

iMX6 Quad imx6qea-com-kit.dts

iMX6 DualLite COM imx6dlea-com-kit.dts

iMX7 Dual COM imx7dea-com-kit.dts

iMX7 Dual uCOM imx7dea-ucom-kit.dts

https://github.com/embeddedartists/uboot-imx/tree/ea_v2018.03/board/embeddedartists
https://github.com/embeddedartists/uboot-imx/tree/ea_v2018.03/arch/arm/dts

Working with Linux and U-boot Page 22

Copyright 2020 © Embedded Artists AB Rev A

iMX7ULP uCOM imx7ulpea-ucom-kit_v2.dts

iMX8M Nano uCOM fsl-imx8mn-ea-ucom-kit_v2.dts

iMX8M Mini uCOM fsl-imx8mm-ea-ucom-kit_v2.dts

iMX8M COM fsl-imx8mq-ea-com-kit_v2.dts

Table 5 - Device tree files for Embedded Artists COM boards

5.1.3 Configuration files

The configuration of a U-boot is divided into two files. Historically it used to be an include file that
contained all configurations, but more and more are moved to a defconfig file utilizing the same kind of
configuration infrastructure (Kconfig) as in the Linux kernel. You will typically modify the defconfig file if
you would like to add support for more U-boot commands or drivers. Defconfig files are located in
<uboot-dir>/configs/, see Table 6 for the files that are used by Embedded Artists COM

boards.

Follow the link below to see the defconfig file for the iMX8M Mini uCOM board.

https://github.com/embeddedartists/uboot-imx/blob/ea_v2018.03/configs/mx8mmea-ucom_defconfig

COM board Defconfig

iMX6 UltraLite COM configs/mx6ulea-com_defconfig

iMX6 SoloX COM configs/mx6sxea-com_defconfig

iMX6 Quad configs/mx6qea-com_defconfig

iMX6 DualLite COM configs/mx6dlea-com_defconfig

iMX7 Dual COM configs/mx7dea-com_defconfig

iMX7 Dual uCOM configs/mx7dea-ucom_defconfig

iMX7ULP uCOM configs/mx7ulpea-ucom_defconfig

iMX8M Nano uCOM configs/mx8mnea-ucom_defconfig

iMX8M Mini uCOM configs/mx8mmea-ucom_defconfig

iMX8M COM configs/mx8mqea-com_defconfig

Table 6 - Defconfig files for Embedded Artists COM boards

If you instead want to modify for example the default U-boot environment, such as change the default
dtb file that is loaded, you need to do this change in the include file which is located in <uboot-

dir>/include/configs/. See Table 7 for a list of all files used with Embedded Artists COM

boards.

Follow the link below to see how the dtb file is defined in the U-boot environment for the iMX8M Mini
uCOM board.

https://github.com/embeddedartists/uboot-imx/blob/ea_v2018.03/include/configs/mx8mmea-
ucom.h#L166

COM board Configuration file (include)

iMX6 UltraLite COM include/configs/mx6ulea-com.h

iMX6 SoloX COM include/configs/mx6sxea-com.h

iMX6 Quad include/configs/mx6qea-com.h

https://github.com/embeddedartists/uboot-imx/blob/ea_v2018.03/configs/mx8mmea-ucom_defconfig
https://github.com/embeddedartists/uboot-imx/blob/ea_v2018.03/include/configs/mx8mmea-ucom.h#L166
https://github.com/embeddedartists/uboot-imx/blob/ea_v2018.03/include/configs/mx8mmea-ucom.h#L166

Working with Linux and U-boot Page 23

Copyright 2020 © Embedded Artists AB Rev A

iMX6 DualLite COM include/configs/mx6qea-com.h

iMX7 Dual COM include/configs/mx7dea-com.h

iMX7 Dual uCOM include/configs/mx7dea-com.h

iMX7ULP uCOM include/configs/mx7ulpea-ucom.h

iMX8M Nano uCOM include/configs/mx8mnea-ucom.h

iMX8M Mini uCOM include/configs/mx8mmea-ucom.h

iMX8M COM include/configs/mx8mqea-com.h

Table 7 - Configuration files for Embedded Artists COM boards

5.2 Linux

Customizing Linux for your product mostly involves creating or modifying device tree files, read chapter
4 for more information about device tree files. In some cases, you might also need to modify the kernel
configuration and / or add new device drivers. Our Linux kernel repository is available at GitHub:
https://github.com/embeddedartists/linux-imx.

5.2.1 Kernel configuration

The default Linux kernel configuration for Embedded Artists COM boards is stored in the kernel
sources. There are two different files; one for iMX6 / iMX7 based COM boards and another for iMX8
based COM boards.

COM board family Configuration file

iMX6 and iMX7 <kernel-dir>/arch/arm/configs/ea_imx_defconfig

iMX8 <kernel-dir>/arch/arm64/configs/ea_imx8_defconfig

Table 8 - Default configuration for Linux kernel

If you need to modify the default kernel configuration it is recommended to use a tool, such as make

menuconfig, to do this instead of editing the configuration file manually. The Embedded Artists

document “Working with Yocto” has instructions of how you can run make menuconfig from within

Yocto or if you build the kernel directly from source code.

In the example below we want to enable dynamic printk support (CONFIG_DYNAMIC_DEBUG) in the

kernel.

1. Run the menuconfig tool.

$ make menuconfig

2. In the menu go to Kernel hacking → printk and dmesg options → Enable dynamic printk() support

3. Click Exit a number of times and when you are asked to save the new configuration click Yes.

4. You can now build the kernel with the new configurations to make sure there are no errors.

5. When you are satisfied with the configuration changes, generate a new defconfig file.

$ make savedefconfig

6. The file will be called defconfig and stored in the root of the kernel sources. You can replace the

current default configurations by copying this file to the location of the default configuration file as
shown below (for iMX8).

https://github.com/embeddedartists/linux-imx

Working with Linux and U-boot Page 24

Copyright 2020 © Embedded Artists AB Rev A

$ cp defconfig arch/arm64/configs/ea_imx8_defconfig

5.2.2 Device drivers

Peripherals that you need access to from Linux needs a device driver. The kernel already contains
device drivers for many peripherals so the first step is to search in the kernel sources for the
peripheral. Device drivers are located in <kernel-dir>/drivers.

In the example below we search for the Atmel MXT1664 touch controller and finds it in the
input/touchscreen directory.

$ cd <kernel-dir/drivers

$ grep -r mxt1664 *

input/touchscreen/Kconfig: module will be called atmel_mxt1664_ts.

input/touchscreen/Makefile:obj-$(CONFIG_TOUCHSCREEN_ATMEL_MXT1664) +=

atmel_mxt1664_ts.o

input/touchscreen/atmel_mxt1664_ts.c:struct mxt1664_ts {

...

If the device driver isn’t available in the kernel you need to add it. It is out-of-scope for this document to
describe how you develop a new device driver and it is actually not that common that you need to
develop it from scratch anyways. The most common approach to add a missing device driver to the
kernel is as follows.

1. Go to the manufacturer of the peripheral and see if they have a device driver available.

2. If the manufacturer doesn’t have a device driver look in newer versions of the Linux kernel
you are using. If it has been added you need to back-port it to the version of the kernel you
are using.

3. Besides looking in a newer version of the kernel you are using you could look in other kernel
source repositories such as the main line kernel or NXP’s community kernel.

a. https://github.com/torvalds/linux

b. https://github.com/Freescale/linux-fslc

4. If you find a device driver you need to add it to your kernel sources which involves several
steps (the exact number of steps can be different for different types of device drivers).

a. Copy the device driver file(s).

b. Add the new file to the relevant Makefile.

c. Add a new configuration to relevant Kconfig file.

d. Make sure the new configuration is enabled by adding it to the default configuration
file.

e. Make sure everything builds.

If you inspect the commit below and look for mxt1664 you can see how Atmel’s touch controller driver
was added.

https://github.com/embeddedartists/linux-imx/commit/5549a9a2bf234fe61db2eec5f25676e7d97fe091

https://github.com/torvalds/linux
https://github.com/Freescale/linux-fslc
https://github.com/embeddedartists/linux-imx/commit/5549a9a2bf234fe61db2eec5f25676e7d97fe091

Working with Linux and U-boot Page 25

Copyright 2020 © Embedded Artists AB Rev A

6 Miscellaneous
6.1 Copy files to / from target using SCP

If you want to transfer files to a running target you can use the Secure Copy (SCP) tool. It is for
example convenient to use SCP to copy the kernel or device tree files from your host computer to the
target if you are doing your own kernel / device tree development.

Note: Using SCP requires that you have a network connection to the target.

6.1.1 Allow root to login over SSH

These instructions are based on using a default ea-image-base image where root is the only user

on the target. By default, the user root is not allowed to login to the target over an SSH connection so
we have to begin by allowing this.

1. Boot into Linux and login using user: root, password: pass.

2. Open the SSH config file.

nano /etc/ssh/sshd_config

3. Search for PermitRootLogin and uncomment that line and then save the file. If you are using

nano editor you search by CTRL+W and you save by CTRL+O.

##LLooggiinnGGrraacceeTTiimmee 22mm

PPeerrmmiittRRoooottLLooggiinn yyeess

##SSttrriiccttMMooddeess yyeess

6.1.2 Get IP address of the target

Use ifconfig to get the IP address of the target. In this example the IP address is 192.168.1.92.

ifconfig

eth0 Link encap:Ethernet HWaddr 00:1A:F1:10:27:B8

 inet addr:192.168.1.92 Bcast:192.168.1.255 Mask:255.255.255.0

 inet6 addr: fe80::21a:f1ff:fe10:27b8/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:15308 errors:0 dropped:8740 overruns:0 frame:0

 TX packets:198 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:1501699 (1.4 MiB) TX bytes:22795 (22.2 KiB)

6.1.3 Copy file to target

On your Linux based host computer run the command below to copy the file myfile.txt to the user

root’s home directory (/home/root). If this is the first time you transfer a file to this target you will be

asked if you want to continue. Answer yes. Then you will also be asked for root’s password which by

default is pass.

$ scp myfile.txt root@192.168.1.92:/home/root

The authenticity of host '192.168.1.92 (192.168.1.92)' can't be

established.

ECDSA key fingerprint is

SHA256:S5YI1fIzYiw2f1DdOWCz73//ABpjfxwLst/aqE1f6Qp.

Are you sure you want to continue connecting (yes/no)?

Working with Linux and U-boot Page 26

Copyright 2020 © Embedded Artists AB Rev A

root@192.168.1.92's password:

myfile.txt 100% 6 0.0KB/s 00:00

6.1.4 Copy file from target

On your Linux based host computer run the command below to copy the file myfile.txt from the

user root’s home directory (/home/root) to your host computer. You will be asked for root’s

password which by default is pass. In the example below we copy the file to the working directory,

that is, the directory where we run scp. You can also specify a complete path if you want to copy it to

a different location.

$ scp root@192.168.1.92:/home/root/myfile.txt myfile.txt

root@192.168.1.92's password:

myfile.txt 100% 18 0.0KB/s 00:00

6.1.5 Use SCP on a Windows host

If you are working on a Windows host you can use an application called WinSCP to transfer files to /
from the target. This is an application with a user interface and not a command line based application.

https://winscp.net/eng/index.php

When you start the application, you are asked to login. In this dialog you enter the host name, user
name, and password as can be seen in Figure 5 below.

Figure 5 - WinSCP login dialog

Once you have logged in your will have view of the target file system in one panel (the right panel in
the Figure 5 below). You can see the local file system in the other panel.

More information about how you use this tool can be found on the WinSCP website.

https://winscp.net/eng/docs/introduction

https://winscp.net/eng/index.php
https://winscp.net/eng/docs/introduction

Working with Linux and U-boot Page 27

Copyright 2020 © Embedded Artists AB Rev A

Figure 6 - WinSCP application

	1 Document Revision History
	2 Introduction
	2.1 Conventions

	3 Boot process
	3.1 Overview
	3.2 Processor boot firmware
	3.2.1 Boot mode register
	3.2.2 GPIO boot
	3.2.3 Fuses

	3.3 SPL
	3.4 U-boot
	3.5 Linux
	3.5.1 Initialization manager – systemd

	3.6 Frequently asked questions
	3.6.1 Can I boot from SD/MMC card instead of eMMC?
	3.6.2 How do I launch an application at startup?

	4 Device Tree
	4.1 Introduction
	4.2 Data structure format
	4.2.1 Property values
	4.2.2 Aliases

	4.3 Source files and compiler
	4.3.1 Linux
	4.3.2 U-boot

	4.4 Pin muxing
	4.5 Modify device tree from U-boot
	4.5.1 Usage
	4.5.2 Test different commands
	4.5.3 Add to cmd_custom

	4.6 Frequently asked questions
	4.6.1 Do I need to create my own device tree file?
	4.6.2 How do I create my own device tree file?
	4.6.3 How do I find the device driver?
	4.6.4 How do I find which properties I can use?
	4.6.5 Can I modify the device tree without re-compiling?
	4.6.6 Can I delete a node / property?
	4.6.7 Where do I find more documentation about device tree usage?

	5 Customization
	5.1 U-boot
	5.1.1 Board specific files
	5.1.2 Device tree files
	5.1.3 Configuration files

	5.2 Linux
	5.2.1 Kernel configuration
	5.2.2 Device drivers

	6 Miscellaneous
	6.1 Copy files to / from target using SCP
	6.1.1 Allow root to login over SSH
	6.1.2 Get IP address of the target
	6.1.3 Copy file to target
	6.1.4 Copy file from target
	6.1.5 Use SCP on a Windows host

