

 Working with Cortex-M on iMX8M
Copyright 2021 © Embedded Artists AB

Working with Cortex-M on

i.MX8M

Working with Cortex-M on iMX8M Page 2

Copyright 2021 © Embedded Artists AB Rev A

Embedded Artists AB
Rundelsgatan 14
SE-211 36 Malmö
Sweden

http://www.EmbeddedArtists.com

Copyright 2021 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of
Embedded Artists AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and
specifically disclaim any implied warranties or merchantability or fitness for any particular purpose.
Information in this publication is subject to change without notice and does not represent a
commitment on the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements on this document. Send your comments
by using the contact form: www.embeddedartists.com/contact.

Trademarks

All brand and product names mentioned herein are trademarks, services marks, registered
trademarks, or registered service marks of their respective owners and should be treated as such.

http://www.embeddedartists.com/

Working with Cortex-M on iMX8M Page 3

Copyright 2021 © Embedded Artists AB Rev A

Table of Contents
1 Document Revision History 4

2 Introduction ... 5

2.1 Multi-Core.. 5

2.2 Additional Documentation ... 5

2.3 Conventions .. 5

3 Hardware related ... 6

3.1 UART interfaces on COM Carrier board version 2 6

3.2 Terminal application .. 6

4 Download and start an application 7

4.1 Update boot partition with needed files 7

4.2 Change the device tree file .. 8

4.3 Run from TCM ... 8

4.4 Automatically start the Cortex-M application 9

5 Remote communication applications (RPMsg) 10

5.1 Ping-pong application .. 10

5.2 TTY application ... 10

6 Software Development Kit (SDK) 12

6.1 Download SDK .. 12

6.2 Setup a Linux host ... 14

6.3 Build on Linux .. 14

Working with Cortex-M on iMX8M Page 4

Copyright 2021 © Embedded Artists AB Rev A

1 Document Revision History
Revision Date Description

A 2021-01-12 First release

Working with Cortex-M on iMX8M Page 5

Copyright 2021 © Embedded Artists AB Rev A

2 Introduction
This document provides you with step-by-step instructions for how to work with the Cortex-M
microcontroller on the iMX8M (u)COM boards.

2.1 Multi-Core

The i.MX8M processor is utilizing heterogeneous multiprocessing, that is, using different kinds of
cores. When developing an application that will utilize both these cores there are a number of things
you need to be aware of.

- Both the Cortex-A cores and the Cortex-M core might have access to peripheral blocks in the
processor. For your application, you have to decide which core that is responsible for a
peripheral. This decision can affect, for example, the device tree file used by Linux when
initializing device drivers.

o In the instructions a specific device tree file will be used that disable some
peripherals conflicting with Cortex-M.

- Cortex-A is always the primary core that is the first to boot and responsible for starting Cortex-
M. This is done by the u-boot in our examples.

- There are ways to communicate between the cores. Chapter 5 describes how to run an
application that utilizes Multi-Core Communication.

2.2 Additional Documentation

Additional recommended documentation:

• Getting Started with iMX Developer’s Kit V2 – shows you how to get started with the
hardware.

2.3 Conventions

A number of conventions have been used throughout to help the reader better understand the content
of the document.

Constant width text – is used for file system paths and command, utility and tool names.

$ This field illustrates user input in a terminal running on the

development workstation, i.e., on the workstation where you edit,

configure and build Linux

This field illustrates user input on the target hardware, i.e.,

input given to the terminal attached to the COM Board

TThhiiss ffiieelldd iiss uusseedd ttoo iilllluussttrraattee eexxaammppllee ccooddee oorr eexxcceerrpptt ffrroomm aa

ddooccuummeenntt..

This field is used to highlight important information

Working with Cortex-M on iMX8M Page 6

Copyright 2021 © Embedded Artists AB Rev A

3 Hardware related
3.1 UART interfaces on COM Carrier board version 2

The COM Carrier board version 2 has a dual channel UART-to-USB bridge, meaning that you will get
two UART interfaces via one USB cable connected between the micro-B USB connector (J16) on the
carrier board and your PC.

There are jumpers on the carrier board that lets you select which UART interface that is connected to
the UART-to-USB bridge, see Figure 1. Jumpers J19/J20 let you select between using UART-A or
UART-C as console for the Cortex-A side. By default, these jumpers select the UART-A interface, that
is, jumpers are in upper position. This is the position they should have for the iMX8M (u)COM boards.

Jumpers J17/18 lets you select between using UART-B or UART-C as console for the Cortex-M side.
By default, these jumpers are not inserted, but they should be in upper position for the iMX8M Quad
COM board and in the lower position for the iMX8M Mini uCOM and iMX8M Nano uCOM boards.

Figure 1 - COM Carrier Board V2, UART interface connectors

3.2 Terminal application

You need a terminal application (two instances of it to connect both to the Cortex-A side and the
Cortex-M side). We recommend Tera Term, but you can use the terminal application of your choice.
Connect to the virtual COM ports using 115200 as baud rate, 8 data bits, 1 stop bit, and no parity.

J18, J17, J19, J20
Left to right

J19, J20
Upper position: connect UART-A to Cortex-A console
Lower position: connect UART-C to Cortex-A console

J18, J17
Upper position: connect UART-B to Cortex-M console
Lower position: connect UART-C to Cortex-M console

J16
micro-B USB

connector

Working with Cortex-M on iMX8M Page 7

Copyright 2021 © Embedded Artists AB Rev A

4 Download and start an application
This section describes how to download and start a pre-compiled application.

4.1 Update boot partition with needed files

The remaining parts of this chapter assumes that the first partition of the eMMC contains the pre-
compiled applications. If you have programmed your board using a UUU bundle from 2020-11-04 or
later the files will already have been copied to the eMMC flash. If you have programmed using an older
version and don’t want to update you can follow these instructions.

Note: It is not necessary to have the Cortex-M applications on the eMMC, but for simplicity
the following instructions in this chapter assumes they are.

Download pre-compiled applications

Go to http://imx.embeddedartists.com and download the file compiled_cortex_m_apps.zip for

your (u)COM board.

Copy via USB memory stick

There are several ways to copy these pre-compiled files to the eMMC, but here we will use a USB
memory stick.

1. Unpack the file compiled_cortex_m_apps.zip file and copy the unpacked files to the

USB memory stick. This is something you do on your computer.

2. Boot into Linux and insert the USB memory stick into the USB host port on the carrier board.
You will see output like below in the console when inserting the USB memory stick. The most
important part is the last line that lists the device name (sda1).

[23.104504] usb 1-1.2: new high-speed USB device number 4 using ci_hdrc

[23.165591] usb 1-1.2: New USB device found, idVendor=0781, idProduct=5406,

bcdDevice= 0.10

[23.173972] usb 1-1.2: New USB device strings: Mfr=1, Product=2, SerialNumber=3

[23.194511] usb 1-1.2: Product: U3 Cruzer Micro

[23.199055] usb 1-1.2: Manufacturer: SanDisk Corporation

[23.204371] usb 1-1.2: SerialNumber: 0000185A49619848

[23.225447] usb-storage 1-1.2:1.0: USB Mass Storage device detected

[23.264533] scsi host0: usb-storage 1-1.2:1.0

[24.315418] scsi 0:0:0:0: Direct-Access SanDisk U3 Cruzer Micro 2.18 PQ:

0 ANSI: 2

[24.334542] scsi 0:0:0:1: CD-ROM SanDisk U3 Cruzer Micro 2.18 PQ:

0 ANSI: 2

[24.345768] sd 0:0:0:0: [sda] 8015505 512-byte logical blocks: (4.10 GB/3.82

GiB)

[24.364543] sd 0:0:0:0: [sda] Write Protect is off

[24.373248] sd 0:0:0:0: [sda] No Caching mode page found

[24.378630] sd 0:0:0:0: [sda] Assuming drive cache: write through

[24.443649] sda: sda1

3. Mount the USB memory stick and eMMC partition. The USB memory stick has in this
example the device name sda1 as can be seen in the output in step 2 above. The partition

on the eMMC that we will use is available at /dev/mmcblk2p1, but this can be different for

different (u)COM boards.

mkdir /mnt/usb

mount /dev/sda1 /mnt/usb

mkdir /mnt/mmcboot

mount /dev/mmcblk2p1 /mnt/mmcboot

http://imx.embeddedartists.com/

Working with Cortex-M on iMX8M Page 8

Copyright 2021 © Embedded Artists AB Rev A

4. Copy the bin file(s) from the USB memory stick to the boot partition. In this example we are
only copying cm_TCM_hello_world.bin.

cp /mnt/usb/cm_TCM_hello_world.bin /mnt/mmcboot/

5. Unmount the devices

umount /mnt/usb

umount /mnt/mmcboot

4.2 Change the device tree file

Some of the u-boot environment variables need to be updated.

1. You must have booted into the U-boot console.

2. Change which device tree file to use by Linux. The example below sets the file to use for the
iMX8M Mini uCOM Developer’s Kit V2. If you are using a different board just use the same
name as set by default in the fdt_file variable and append ‘-m4’.

=> setenv fdt_file imx8mmea-ucom-kit_v2-m4.dtb

=> saveenv

4.3 Run from TCM

Make sure you have built an application for TCM or selected a pre-built application for TCM. The
application file must have been copied to eMMC as described in section 4.1

Note: All of the U-boot variables created below (starting with cm_) might already be

available as default variables depending on which U-boot version you are running. You can
check if they are available by printing the environment with printenv.

1. You must have booted into the U-boot console.

2. Set the file name in the cm_image variable.

=> setenv cm_image cm_TCM_hello_world.bin

3. Set the address where the application will run from (TCM memory in this case).

=> setenv cm_addr 0x7e0000

4. Create a variable that loads the application from eMMC

=> setenv cm_loadimage 'fatload mmc ${mmcdev} ${loadaddr}

${cm_image}'

5. Create a variable that will load and boot the application. It loads the image from eMMC to
DDR memory, copies from DDR memory to TCM memory and then boots the application. The
application is loaded via DDR memory since fatload in U-boot can only load to memory

regions that aren’t marked as reserved and the TCM memory is considered reserved.

=> setenv cm_boot 'run cm_loadimage; cp.b ${loadaddr} ${cm_addr}

${filesize}; dcache flush; bootaux ${cm_addr}'

Working with Cortex-M on iMX8M Page 9

Copyright 2021 © Embedded Artists AB Rev A

6. Save the changes.

=> saveenv

7. Boot the Cortex-M application.

=> run cm_boot

4.4 Automatically start the Cortex-M application

If you want the Cortex-M application to start during boot of the board follow the instructions below.

1. You must have booted into the U-boot console.

2. You should also have followed the instructions in any of the sections above depending on
which type of application you use.

3. Change the bootcmd variable to first run cm_boot and then boot Linux.

=> setenv bootcmd "run cm_boot; ${bootcmd}"

=> saveenv

Working with Cortex-M on iMX8M Page 10

Copyright 2021 © Embedded Artists AB Rev A

5 Remote communication applications (RPMsg)
5.1 Ping-pong application

The RPMsg ping-pong application is an example of communication between the Cortex-A core and the
Cortex-M core using the RPMsg API.

1. Make sure the cm_TCM_rpmsg_lite_pingpong_rtos_linux_remote.bin file is

available on eMMC as described in section 4.1 above.

2. Follow the instruction in section 4.3 for how to run an application from TCM memory, but use
the file name cm_TCM_rpmsg_lite_pingpong_rtos_linux_remote.bin.

3. Boot the Cortex-M application

=> run cm_boot

4. In the console for the Cortex-M you will now see the output below

RPMSG Ping-Pong FreeRTOS RTOS API Demo...

RPMSG Share Base Addr is 0xb8000000

5. In the console for Cortex-A boot into Linux

=> boot

6. When Linux has booted you need to load the rpmsg pingpong module.

modprobe imx_rpmsg_pingpong

7. You will now see messages in both consoles / terminals.

5.2 TTY application

The RPMsg TTY application is an example of communication between the Cortex-A core and the
Cortex-M core using the RPMsg API. A TTY channel will be setup making it possible to send
messages from the Cortex-A core to the Cortex-M core from Linux user-space.

1. Make sure the cm_TCM_rpmsg_lite_str_echo_rtos.bin file is available on eMMC

as described in section 4.1 above.

2. Follow the instruction in section 4.3 for how to run an application from TCM memory, but use
the file name cm_TCM_rpmsg_lite_str_echo_rtos.bin.

3. Boot the Cortex-M application

=> run cm_boot

4. In the console for the Cortex-M you will now see the output below

RPMSG String Echo FreeRTOS RTOS API Demo...

Working with Cortex-M on iMX8M Page 11

Copyright 2021 © Embedded Artists AB Rev A

5. In the console for Cortex-A boot into Linux

=> boot

6. When Linux has booted you need to load the rpmsg tty module. You will see a confirmation
that a channel has been created (similar as below).

modprobe imx_rpmsg_tty
[17.860278] imx_rpmsg_tty virtio0.rpmsg-virtual-tty-channel-1.-1.30: new

channel: 0x400 -> 0x1e!

[17.870207] Install rpmsg tty driver!

7. From Linux you can now send a message to the Cortex-M side by using the new TTY channel
(dev/ttyRPMSG0)

echo hello > /dev/ttyRPMSG30

Working with Cortex-M on iMX8M Page 12

Copyright 2021 © Embedded Artists AB Rev A

6 Software Development Kit (SDK)
NXP provides SDK’s for the iMX8M family of processors. These can be downloaded from NXP’s
MCUXpresso website.

6.1 Download SDK

Follow these instructions to download an SDK from NXP’s website.

1. Go the https://mcuxpresso.nxp.com (you must have an account to create and download an
SDK).

2. Click on “Select Development Board” and you will get to the MCUXpresso SDK Builder as
shown Figure 2.

3. Choose the i.MX processor you are using. In Figure 3 the i.MX 8M Mini is selected.

4. Click “Build MCUXpresso SDK”. This button is shown to the right in Figure 3.

5. When the SDK is ready select “Host OS” (we use Linux in this example) and then click on
“Download SDK” as shown in Figure 4.

Figure 2 - MCUXpresso SDK Builder

https://mcuxpresso.nxp.com/

Working with Cortex-M on iMX8M Page 13

Copyright 2021 © Embedded Artists AB Rev A

Figure 3 - Select processor (iMX8M Mini in this example)

Figure 4 - Download SDK

Working with Cortex-M on iMX8M Page 14

Copyright 2021 © Embedded Artists AB Rev A

6.2 Setup a Linux host

These instructions are tested on an Ubuntu 18.04 Linux host. You can also run on other Linux hosts or
on a Windows host. The SDK contains a “Getting Started” document with more instructions. This
document can be found in the docs folder.

1. Install toolchain

$ sudo apt-get install gcc-arm-none-eabi binutils-arm-none-eabi

2. Install cmake and make

sudo apt-get install cmake make

6.3 Build on Linux

Once the toolchain has been installed you can unpack the SDK and build an application.

1. Unpack the downloaded SDK (replace <download dir> with the directory where you
downloaded the SDK.

$ cd ~

$ mkdir 8mm_sdk

$ cp <download dir>/SDK_2.8.0_MIMX8MM6xxxKZ.tar.gz 8mm_sdk

$ cd 8mm_sdk

$ tar -xzvf SDK_2.8.0_MIMX8MM6xxxKZ.tar.gz$

2. The build scripts expect there to be an environment variable called ARMGCC_DIR pointing to

the toolchain directory.

$ export ARMGCC_DIR=/usr

3. Go the armgcc directory of the application you want to build.

$ cd boards/evkmimx8mm/rtos_examples/freertos_hello/armgcc

4. Run the build_debug.sh script to build the debug version of the RAM/TCM target.

$./build_debug.sh

5. Now the application will be available in the debug directory.

$ ls debug

freertos_hello.bin freertos_hello.elf

6. You can now copy and run freertos_hello.bin on target as described in chapter 4

above.

