LautersacH f\

uTrace setup guide for Embedded
Artists LPC4357 development
boar

LAUTERBACH /‘
DEVELOPMENT TOOLS

1 Embedded Artists LPC4357 Guide 16 October 2013

LauTerBAcH/l\

About this document

This document will explain how to get up and running with the Lauterbach pTrace unit and the Embedded
Artists LPC4357 development board. The document goes with a zip file containing the examples and
configuration scripts described herein.

Two examples are provided: one runs a simple loop on the Cortex-M4 core of the device; the other runs a
similar program on the Cortex-M4 and a very simple loop on the Cortex-MO core in the device.

Pre-Requisites

The Lauterbach TRACE32 software for uTrace has been installed. It is assumed that this has been installed
to the default location of C: \ T32_uTr ace. It will be referred to as ST32SYS in the rest of this document.
No changes were made from the default jumper settings.

Setup Procedures

Unzip the archive EA_LPC4357.zip so that it over-writes files in the $T32SYS directory. You may wish to
take a backup of this directory beforehand.

Connect the CombiProbe header to Socket A on the uTrace.

Connect the CombiProbe header (using the MIP134-MIPI120T
adapter) to either Socket J1 on the SODIMM

board (see Figurel) or to socket J10 on the main board (see
Figure 2). For systems using off-chip trace, it is recommended
to use J1 on the SODIMM due to the shorter track lengths of
the trace signals.

In tests here, the board was powered with a 5V external
power supply connected to J24, not the mini USB connector
at J25.

Power on the uTrace and then power on the LPC4357 board.

Start the TRACE32 software and you should see something
like Figure 3 below.

sk, TRACEIZ PosmatrVibw It ARN o 15]
Fle Edt View Yar Dreak Run CPU Misc Trace Pol Cov ComecM3 Window Help

IR T Due sed®:2

Figure 2:J10 on main board

b: £
Lam:ei? Develapmert System {c) 1989-2013 Lauterbach Gubs

analata g | [e P [:F War o] [l PERF | [SWstam Skap Go | [ote || gpeeiow
i ey o

Figure 3: TRACE32
2 Embedded Artists LPC4357 Guide 16 October 2013

LAUTERBACH ‘

From the Fi | € menu, select Run Batchfil e. .., browse to $T32SYS and select

start up. cmm You should see a window which looks like ’r . =l
Figure 4. Detailed use of this script is beyond the scope of St o sormx SR Cool Gee
this document but more information can be found in the i Er— oF|
accompanying St art up Qui de. pdf. oo — =

ooty o S
TRACE32 can be configured to call this script each time you ottt L
start it up. To do this, edit the t 32. cmfile in the $T32SYS ::‘.:.::%‘“’“ﬁ o B
directory. At the bottom of the file, just before the line that i e ”m; g
reads "ENDDQO" add a line which reads T —

o s 5 E = ‘

do startup.cmm

Figure 4: startup.cmm

For now, click the LOAD button and browse for the basi ¢_deno. t 32i ni file which is located in

$T32SYS\ Eval Boar ds\ Enbedded Arti sts\LPC4357

directory. This will populate some of the fields in the startup window. Click the big start button to launch
the demo. The target will be A]
initialised, a small application |- ==r=2x - === is
will be downloaded and

some basic windows opened
so that TRACE32 will now
look like Figure 5.

e s

This will give you JTAG
control of the target. The
connection is via the Serial
Wire Debug (SWD) interface
to the Cortex-M4.

B o T T T T O T T T T T T
 STRI00C0S §isavs siman Stoapad 3t braakgin: [NI F

Figure 5: Demo loaded

3 Embedded Artists LPC4357 Guide 16 October 2013

LauterBacHfl\

Trace Setup

In order to get ETM trace from the Cortex-M4 it is necessary to make a
small modification to the SODIMM board. On the
back of the SODIMM board is a small 00hm resistor
as position SJ1. This can be seen in Figure 6. It is
shown here in the default position connecting pads
1-2. The resistor must be moved to connect pads 2-3
to enable the off-chip trace signals.

The supplied configuration for the LPC4357 board
assumes a working trace port and will setup the pin
multiplexing and TRACE32 software accordingly.
However, until this modification has been made no
trace data can be collected.

Figure 6: SODIMM resistor

Multi-Core Example

The second example loads code which is executed on both the Cortex-M4 and the Cortex-MO0 in the
LPC4357 device. To debug both cores requires that the uTrace has a multi core license added to it.

This can be checked by starting TRACE32 and selecting About " A eenson =
TRACE32. . . from the Hel p menu. Figure 7 shows a multi core TRACL32 PowerView for ARM A
system with the license highlighted. If your system does not have a e
multi core license, please contact your local Lauterbach sales office. oo e ot -
Sefowara Varson: £.20.3.03.CC0047717
Contact details can be found at: ks o, w3
e e
http://ww. | aut erbach. conf sal es S oo o
Debuu Cablh: CLIONTTITE uTiewe
e e e
MR ClkemRico\sppDasiLochTeme ;
Before launching the multi core example some changes need to be i i S
e

made to your conf i g. t 32 file which is located in the T32SYS
directory. These changes will not affect the single core functionality but
will extend TRACE32 to allow two instances of the software to connect to the same pTrace unit. This is
required to debug both cores in an Asymmetric Multi Processor (AMP) setup like this.

Figure 7: Multi core license

Edit confi g. t 32 in your favourite text editor and at the bottom of the file add a
new section that looks like this. The blank line above and below are very important - | | c=NETASSI ST
don't miss them. PORT=22000

Alter the PBI = section so that it now looks like this. Again, don't forget the blank _
line above and below. 82:3_

Save the changes.

4 Embedded Artists LPC4357 Guide 16 October 2013

IL_AUTERBACH__,.;;:?‘ : T — 2

Now take a copy of your confi g. t 32 file and call it . Envi .
. o . ; Environment vari abl es
confi g- 2nd. t 32. Place it in your $ST32SYS directory. oS=
This will need editing as well. The full contents of my | D=T32- 2nd
; : TMP=C: \ User s\ r c\ AppDat a\ Local \ Tenp
confi g t ?)2 file are shown here. Make sure the TMP SYS=C: \ T32_ uTr ace
declaration is correct for your setup; it should be the same
as the one in your conf i g. t 32 file. The main changes are | PBI =

; . USB
summarised below: CORE=2
0S= | C=NETASSI ST
Change ID= PORT=22001
Change TMP . Printer settings
PRI NTER=W NDO\S
PBI=
— ; Screen fonts
CORE=2 SCREEN=
FONT=SMALL
IC= HEADER=TRACE32 2nd Core
Change PORT=
SCREEN=

Add HEADER=

As before, connect the hardware and launch TRACE32. Run the st art up. cnmmscript, if your system is not
already configured to auto run this. Click the LOAD button and browse for the
dual core_deno. t 32i ni fileinthe

$T32SYS\ Eval Boar ds\ Enbedded Arti st s\ LPC4357

Click the big start button. After the first core has been initialised and code loaded a second instance of
TRACE32 will be started and connected to the Cortex-MO core. The symbols will be loaded and you will end
up with two instances of TRACE32, looking like Figure 8. These have been resized to make the image fit

here.
FFE RS - s W e i rm e - =EE
MWW+ pm 2 TN gl TR biﬂ.J‘J:‘.‘D"ll;i’-]‘?k?‘.‘“-‘Jﬂl“ﬁ.td‘i‘“Zﬁ”

([Bt = IE S | g e Regter sSpaTUGHT
o | ek || (Faods | Fne: :

are W || Eetin

|| Mitns || B O
addr/Tine wou

o || bGo | Ik || [F]Hode | Fne

1 ®
] 20008000

o 0000815
[fw000000
0002000

retura = 0

mine mager || dwvicw [baca Var Lt PERF Syszam Stap G Bragk || ether prmom s i i aie o var st PERF. SyStem Step 52 Ereek ke wian
5730000724 | e sevelman b e oo MR I sTai006E Vdenseeibatgomd ot b 0
—_— N —

Figure 8: Multi core Configuration

The target has been configured so that each core can be single stepped independently but when either
core starts or stops (user controlled or via a breakpoint) the other core will also start or stop. These
settings can be adjusted using the Synch command. Please refer to the TRACE32 documentation.

5 Embedded Artists LPC4357 Guide 16 October 2013

Lautersacr/l\

Tutorials

This section will provide some basic tutorials to help familiarise users with the TRACE32 concept.

Run Control

The target can be controlled via the buttons at the top of the
Li st window or using the control buttons on the toolbar.
See Figure T1. Users can also right-click on a line of code in
any Li st windowandselectGo Till toruntoa
particular point. If you wish to run to known symbol the GO
command can be entered on the command line. See Figure
T2 for an example that will cause the debugger to run the
target until the entry of function f unc14 is reached.

Breakpoints

Double-click a source line in any List window to set a default
breakpoint. Right-click a line or variable for more control over
a breakpoint. For even finer control of breakpoints select

Set ... from the Br eak menu - see Figure T3.

Change the settings to match figure T3 and click OK. Start the
target running and it will halt at line 681 where the first write

of 1 to variable f | ags[3] occurs.

Task aware, conditional and counting breakpoints can all be

Fle Eoit View Wzr Ersak Aun CFL Moo Trace Pef Cov LPC43m Window Help

HE|[+¥ 2 bl t-*|§w|: 2w éas @z 2

=l gt | = [t e
A
|| Mawp [Wow | el [f50wm e [pee [1 El;dkﬂl_@l”.u | Fid:
add-lice lcade lebrl rnenonic Coqme)

satie dnt oiouet = 0y

Flgure T1: Run Control Buttons

| |] i

‘B: :{go funcl4

| [ok] || <range= || <address> |

ST:20000CC8 \\sieve\sieve\main

Figure T2: The Go command

ﬁiBanakSa [::]IE.!:!
address | expression
flags[3] - [&]@HL
typo options implementation
) Program T Exclude [T Terporary auto 5
) RezdWrite | | | NOMARK [C] pisable - action
) Read [] DISableHIT stop -
@ Wrie - DATA =t
) default 0x01 [|| | [advanced|
(Ok | [Add | [Decte | | cancel |

Figure T3: Break.set

set. Click the advanced button to access these extra settings. Discussion of these options is beyond the
scope of this document but should be reasonably self-explanatory.

The Vector catch unit can be programmed by selecting the OnChi p Tri gger. .. option from the

Br eak menu.

Registers
CPU registers can be viewed by using the Regi st er

command or by selecting CPU Regi st er s from the CPU
menu. This command can take a / SPOTLI GHT option which
causes the last four sets of deltas to the window contents to
be highlighted. See Figure T4. Double-click a register to
change its contents or right-click for indirect views.

6 Embedded Artists LPC4357 Guide

B B:Register /SPOTLIGHT
- R0 g KO
Z @ Rl g RO
CC RZ J4E3

\ 3 350
20003FC3

00003034
2000202C
00000000
+1& 00000009
EOUDDABY +1C 1UY34508
ELOOODA0 70 DODGOO0E
20C03FE0 +24 20000F3C

] ABLICTO7
+2C 00000000

2000103C
20003FER
ZUDUSEES

20003FBO

+45 ES0D6643

Figure T4: Highlighted Registers

16 October 2013

Lautereackfl\

The processor's peripheral control registers can be accessed via a dedicated
menu which is dynamically added at runtime once the

o E:PER ==

user has made their CPU selection. From here all of the GIMA (Globs) Input WuTtiplexer Acra
. . APO_U_IN OO0000 SELECT LTIR_O - :
different sub-systems can be selected. A global view . Egi;ﬁl:g N Zt:jtu
. AB0_1 ELE CTIN_1 FULSE Disable
can also be obtained by selecting Per i pher al s from sooonos o Mot imerres o DS
the CPU menu. An example can be seen in figure T5. =" Disahied T Rt e ted
o . G comecos. ST e g Sl
This window can also take the / SPOTLI GHT option to B soco0000 tecr M anverted
highlight any changes to the contents. — ovoooo0n s, Dizablcs 1 Kot imlertes
o SYN DigaE'lecr‘_ EDGE Disabled
00000000 = L %?E::;%’h: La¢ .-_ g:ag}eg
A left-click on any of the registers or bit-fields will . 00000000 ey et dnverzed
. . . FULSE Disabled SYNCH Dnsabled -
cause the address and bits to be displayed in TRACE32 J .
status line. Figure T5: Peripheral Registers

A right-click on any of the bit-fields will pop up a menu with a list of allowable values.

Variables

Variables can have their value displayed by left-clicking them in any window.
Variables can be dragged to a view or watch window. Local
and global variables can be shown by selecting the
appropriate options from the Vi ewor Var menus. Right-
clicking a variable opens up a menu with a number of

options for viewing it. A few are shown in figure T6. ﬁ“iil:..:if‘;::ﬁluw i o T Bl
Variables can be displayed graphically, in tables, can be R AR
cast to other variable types. Memory can be cast to a
variable type for display and there are special options for I'n e L
frame buffers, linked lists and waveforms. g Iy - !

Macros can be created that will take variable values and
convert them to real world values, such as volts from an
ADC reading.

Figure T6: Variable Views

Try displaying the array f | ags[] in function si eve in a number of different ways.

go sieve
Right-click f | ags and look at the options under ot her .

Where the processor supports it and the debugger has been configured for dualport memory access
variable values can be displayed and updated non-intrusively whilst the Cortex-M is executing code.

7 Embedded Artists LPC4357 Guide 16 October 2013

LAUTERBACH Jl\
DEVE EN 4

Memory
Memory can be viewed by selecting Dump... from the View menu. Enter the
address to view and set any relevant options. A \

. K . . i 8 [B=Data.dump (0:20000000) /DIALOG] = |[E=
WlndOW Wl” be dISp|ayed Ilke flgure T7. Memory C:0x1FFFFFLO | #1Find...| | Modify... | Long T E Track ¥ Hex [¥]Asci
can be searched for a pattern. Memory can be filled PR R LR R et g !

) gg:_ i;::::;g 00000000 00000000 00000000 00000000 YLLYTINLTTAILY !
with a pattern or a test pattern. Two ranges can be SDLLEFETF0 i =
compared or a CRC can be calculated for a given §§§EEE§EZ§
range. A walking bit test can also be performed EEE:EEEEE i
over a memory region. §S}:§Z§E§3 00000000 00000000 G000I000 00000000 %4Y g

. . Figure T7: Memory Dum
All memory view windows can have the 8 v P

/ SPOTLI GHT option added to them allowing the highlight of any changes in contents. Each value has a
right-click menu behind it providing access to further options.

Try the following:

var.view flags /SPOTLI GHT
data.dunp flags /dialog /SPOTLI GHT

Change the values in one window and the values in the other will be highlighted.

Performance Analysis

A sample based performance analysis capability is provided. This can be accessed by selecting Per f
Configuration... fromthe Perf menu. An entire book could be written on this window alone so
instead a few examples will be provided to get you started.

This is a sample based metric and may or may not be intrusive depending upon the core chosen. If the
DWT in the chosen core supports the PC Snoop mode, the

o Bper, 'Corex-M4 Core Registers, Data Watzhpoint znd Trace Unit"
sampling will be made non-intrusively. This can be checked ety w e
by opening the Dat a WAt chpoi nt and Trace WREETRE R A
setting from the Peripheral Registers view and checking En;gﬁgdl
the availability of PCSAMPLEENA. See Figure T8. PC Snoop L49c2487 Zo
is available on all Cortex-M4 cores, all Cortex-MO+ cores, ‘ N ODOOUD SLEerni 0D
and all Cortex-M3 cores of r2p0 or newer. B 0;?;?,0;}2 Tglpc 5n£p

If this is available non-intrusive metrics can be collected. Set the METHOD in the Perf window to Snoop.

If not, the target will need to be halted to read the Program Counter for the samples. Set the METHOD in
the Perf window to St opAndCo.

&l EER Lune =
[B .| oo | il Qvan) ot | @ ine] © e @Am)
To view relative function runtime analysis: I‘¥l"o B e S
Set the METHOD as described above ;1 i
Set the Mode to PC T ——
Set the state to OFF %é gg}?’;:
Click the ListFunc button =
Start the target running nd, UEm e
An example is shown in figure T9. E]u.:\ i

Figure T9: PC Snoop
8 Embedded Artists LPC4357 Guide 16 October 2013

LautersacHf

To view data values:
Set the METHOD as described above

B 6PERF ListDictrin ===
Set the Mode to Memory y TR T T TR T T
Set the State to OFF I !
Set SnoopAddress to flags e =5 R
Set SnoopSize to Long P

Click the ListDistrib button
Start the target running
An example is shown in figure T10.

Figure T10: Data Snoop

On-Line Help

If Adobe Acrobat Read is installed on your PC before you install TRACE32 for uTrace a help plug-in will be
automatically configured. Help can be accessed at any time by pressing the F1 key. Partially type a
command and press F1 and after a few seconds wait the appropriate page of the documentation will be
opened up in the Acrobat Reader. Click and window and press F1 and help for that window will be
displayed. Additional help can be found on the Help menu, including a search capability and a target
manual which describes in more detail the debug capabilities of the family of cores you are working with:
No. breakpoints, non-intrusive memory access, dealing with watchdogs, etc.

There is an issue with Adobe Reader 10 which causes the right book to be opened but not the correct page
to be displayed.

You can also contact your local Lauterbach representative if you have any questions about the operation of
the uTrace unit or the TRACE32 software interface. A list can be found at:

http://www.lauterbach.com/tsupport.html

9 Embedded Artists LPC4357 Guide 16 October 2013

LAUTERBACH j‘

Trace Examples

All of the previous tutorials have been using the JTAG or SWD interface. The next batch will look at using
the off-chip trace or ETM. The example scripts configure the trace port and pins but the board still needs to
be modified as described on page 4 so that the trace signals are available for the uTrace to capture.

Basic Trace Collection

Select Configuration from the Trace menu. You should get a

window like that in figure T11. Make sure that the METHOD is o i

set to CAnalyzer and the state is set to OFF. Ensure that the Rttt s

AutoArm box is ticked. This allows tracing to start and stop as = ey N

the target CPU starts and stops. “or . = e Em
ol Bash YT

Start the target and let it run for a few seconds before T” “?Lk vl e

stopping it again. There should be a blue bar in the used box i) | Clet || O

to indicate the number of trace records captured. This should | P2

number in the tens or hundreds of thousand for a few :'E’

seconds of run time. If it is less than a hundred or so you may

need to check the resistor positioning as there appears to be Figure T11: Trace Configuration

no meaningful trace data.

Once you have some trace data captured, click the List
button and see the program flow information. The
window will look like figure T12. Click the Mor e or Less
buttons to filter the amount of information displayed in
the window.

-C0B000037 SIR00CC54 sbrece Wsdere \sieve' funcIraias D.00us

The trace data can be searched. Click the Fi nd button
and enter the text “sieve” into the address/expression
box. Then click the Fi nd Al | button. This will show a
window that looks like figure T13 with all occurrences of
calls to the function si eve in the trace buffer. Clicking on
any of these will cause the trace listing window to jump to
that point in the buffer so you can see the program flow
around that event.

LA 3 . IT IR g Vs evel s e Fansiaaie o aets

Figure T12: Program flow trace

Theti . back column in the search results window shows
the time between function calls. It should average out at
around 72.5us.

Figure T13: Search Results

By default there is no data trace on the Cortex-M so data reads and writes will not be traced and cannot be
searched for. However, if the DWT on your device supports it you can use a data breakpoint (up to four of
them are allowed for in the Cortex-M specification but the actual number is core specific) to cause a data
trace event to be injected into the trace stream. Care should be taken when doing this as data trace
packets cannot be as easily compressed as the program flow trace packets and you may get an internal
trace FIFO overflow and some data will be lost.

10 Embedded Artists LPC4357 Guide 16 October 2013

LauterBAcH

In the trace list window, click the Chart button to see

ﬂB::Trace.C}’artstb:ll

a view of functions against time, similar to that in

Figure T14. The example shown here has been
zoomed in to show individual functions against the
timeline on the horizontal axis.

The zoom can be controlled in a number of ways:

- Click the I n and Qut buttons

- Click on the chart and use the mouse scroll
wheel to zoom in and out

- Click and drag to select an area of the chart
and then left click within it to zoom it to the
full size of the window

- Double-click on the chart but do not release

= ii=E=
25w, || il Guws.. || 58 Gl |8 Gulva..][F3Find... |[40 51][k40w | [NMFul
E5%, 500ms -E34.480m5 -EI4.460m5 654,420
adcress iy i 1 i 1 |
fothe)il _ -
2 i [i |]
m
m]
i
Funell jd [
-
]
I
I
L]
1
A
n
o
|
. |
|
1
|
]
S

the second mouse click. Move the mouse up

and down to zoom in and out around the point clicked on.

Code Coverage

With program flow trace available it is easy
to get code coverage information. Select

0 B Trace DOV erage LniFure:

Figure T14: Trace Chart

Add Tracebuf f er from the Cov menu.
This will add the contents of the current
trace buffer to the existing code coverage
database. Like this multiple test runs can be
aggregated. Now select Li st functi ons
from the Cov menu. You should see a
window like that in Figure T15.

Any of the functions can be expanded by

which only has partial coverage. You should see a
modified source view window similar to Figure T16. If
you toggle the Mode button to switch to High Level
Language (HLL) view you will see that only the default
case in the switch statement has ever been executed.

11

sy || Q) Gote.. || Ehus

Hoadd [[Siaa | £

E

PIRE AN

bt
]

sBeg

ol e

Figure T15: Function level code coverage
clicking on the “+” icon to see individual sources lines. Expand f unc11, which has only partial coverage, to
see which lines haven’t been covered. Double-click on line 438 —438 to see more detail about that line

2] Bulist PO:200DO9CH /COV

= == |

| M step |

coverage

W Over |

+ Next | ¢ Retum

@Up |l bGo || I Break][ZIMode | Frd:

mnemonic

compent |

partial

addr/1ine code
a5

5T:200009C4 |68
5T:200009C6 [F10

5R:200009E4
SR:200009€

DR3E

441

5T :200009&C |6ATR

5T:200009€
5T :200009F

5T:200009F4 |6
5T: 20000976 |f
ST:200009FA |6

44

443

Tabel
switch [x)

"

5tr
return x*x;

D2 0000A41
020000437

r3, 07, FOxd]
r3,r3, MxL
v, [r7 POxd]

Figure T16: Low level code coverage

Embedded Artists LPC4357 Guide

16 October 2013

LauTersach fl\

Performance Analysis

Collect some trace data and then from the
Per f menu select Functi on Runti ne

and then Show Det ai | ed Tree. You
will get something similar to Figure T17.
Figure T17 has had some of the irrelevant
columns removed from the display so that
it more easily fits this page.

For the sample period, this view shows the
minimum, maximum and mean time spent

A4 .1 30u; . Faien
AT 418 | 17,30 5

in each function. It also shows time Figure T17: Detailed Performance Measurements
consumed by any sub-functions and the number of times each function was called.

Each function has a right-click menu on it to provide more detailed analysis of call trees, runtimes and
distance between calls to a function. Try some of the options and see what you can learn about this code.
For example, right-click f unc1 and select Li nkage or Par ent s from the menu.

Trace Based Debugging

Collect some trace and then select CTS Set ti ngs from the

Tr ace menu. You will see a window like that shown in Figure T18.
Change the state to ON. This will take anything from a few seconds
to several minutes to process, depending upon how much trace
data you have sampled and how fast your connection to the uTrace
unit is.

When it has finished processing, the buttons in any Li st windows
will become yellow and some new buttons will be added:
- Step back over
- Step back into
- Go back to Entry

-

BuCTS
i state - [progress
) OFF
@ 0N shown: 8%
= warnings -
commands :
I~ fifafull
|
- Mode -
© Ful
© Memory
| 28 cacHE () CACHE

===
[~ options
[Vl usesIm
[Fusevm
[Vl UseConst
[¥] UseMemory
[¥] UseRegister
UseCACHE
[¥] UseReadCycler
[¥] UsariteCyce
[¥] Smart Trace
[58 edtiveTrace
[¥] MCremental|

Figure T18: CTS Settings

] i BuiList = =&
- (st T 0w JTnest T Rewm][up [Tistes [T over J|_Enty J[J o] Efeda]
See Figure T19 for this. This allows users to step and run s s Aree
backwards and forwards through a reconstruction of o o
423
the system context at any point during the period that Ca o
was sampled into the trace buffer. You can inspect the B 43
contents of memory, registers and variables as far as 3
they can be reconstructed. Where something cannot be e
437 |1
reconstructed it’s value will be replaced with 22?7’ Pk

Additional entries in the Li st window’s right-click
menu will be added:

- GoTill

- Go Back Till

12 Embedded Artists LPC4357 Guide

Figure T19: New Run Control Buttons

16 October 2013

LauterBacH

Clicking the Li st button in the CTS window will
open a different view of the trace data, showing
function nesting and function and instruction
runtimes. Each of the functions can be expanded.
Where data values can be reconstructed the
change in variable will be shown at each step. An
example can be seen in Figure T20.

A chart view can be constructed from this window
by clicking the Char t button.

Right-clicking any line of code in the CTS. Li st

& B=CTS List

record

| P || BcTs... [0 Gow...|[FiFind... || EITREE || Achart || chart || & More || Xiess |

= 0000000188

= 0000000154

~0000000166
0000000166

~00000001ES |+

-0000000183 |+

326
=0000000166 | «

331
= 0000000166 | «

return = §
L e
=Funcs

a = 268961686
b = 152

C = 268961688
return = 11

~funcs
L %
=Funcs®

static int ® funcii

static statl = @;
register regl;
auto autol;

autol = statl;

Figure T20: CTS.List view

0.338us =
4.05%us
2.784us

0.116us

0.154us

window or right-clicking anywhere in the CTS. Char t window will cause a menu to popup. Select Set CTS
and all windows will be updated to reflect the state of the target as reconstructed at that point in history.
Using this allows users to quickly zone in the actual cause of a bug rather than just trapping on the

subsequent error caused by the bug.

Before ‘normal’ debugging can be resumed the CTS mode must be exited. The can be done by setting the
state to OFF in the CTS window or by entering the command CTS. OFF.

13 Embedded Artists LPC4357 Guide

16 October 2013

