
1 Embedded Artists LPC4088 Guide 21 October 2013

µTrace setup guide for Embedded
Artists LPC4088 development

board

1 Embedded Artists LPC4088 Guide 21 October 2013

µTrace setup guide for Embedded
Artists LPC4088 development

board

1 Embedded Artists LPC4088 Guide 21 October 2013

µTrace setup guide for Embedded
Artists LPC4088 development

board



2 Embedded Artists LPC4088 Guide 21 October 2013

About this document

This document will explain how to get up and running with the Lauterbach µTrace unit and the Embedded
Artists LPC4088 development board. The document partners with a zip file containing the examples and
configuration scripts described herein.

Two examples are provided: one runs a simple loop on the Cortex-M3 core in the device; the other runs
the FreeRTOS demo program provided as part of the sample code from Embedded Artists.

Pre-Requisites

The Lauterbach TRACE32 software for µTrace has been installed. It is assumed that this has been installed
to the default location of C:\T32_uTrace. It will be referred to as $T32SYS in the rest of this document.
No changes were made from the default jumper settings.

TRACE32 Build 48187 or later is required for the LPC4088
device. This can be found by selecting
About TRACE32... from the Help menu. You will see
something like Figure1. The version has been highlighted in
this image.

You may also need a FLASH update package to include
support for the LPC40xx devices. You will need the
$T32SYS\demo\arm\flash\lpc40xx.cmm file dated
Monday 21st October 2013 or later. The date can be found
by looking at the end of the comments section (around line
90) of the file.

This version does not yet support the peripheral register
view. Only the core Cortex-M3 registers are available.

If your version is older than this or you do not have the
FLASH programming scripts please contact your local
Lauterbach representative who can arrange an update for you.

Figure 1: TRACE32 Version

2 Embedded Artists LPC4088 Guide 21 October 2013

About this document

This document will explain how to get up and running with the Lauterbach µTrace unit and the Embedded
Artists LPC4088 development board. The document partners with a zip file containing the examples and
configuration scripts described herein.

Two examples are provided: one runs a simple loop on the Cortex-M3 core in the device; the other runs
the FreeRTOS demo program provided as part of the sample code from Embedded Artists.

Pre-Requisites

The Lauterbach TRACE32 software for µTrace has been installed. It is assumed that this has been installed
to the default location of C:\T32_uTrace. It will be referred to as $T32SYS in the rest of this document.
No changes were made from the default jumper settings.

TRACE32 Build 48187 or later is required for the LPC4088
device. This can be found by selecting
About TRACE32... from the Help menu. You will see
something like Figure1. The version has been highlighted in
this image.

You may also need a FLASH update package to include
support for the LPC40xx devices. You will need the
$T32SYS\demo\arm\flash\lpc40xx.cmm file dated
Monday 21st October 2013 or later. The date can be found
by looking at the end of the comments section (around line
90) of the file.

This version does not yet support the peripheral register
view. Only the core Cortex-M3 registers are available.

If your version is older than this or you do not have the
FLASH programming scripts please contact your local
Lauterbach representative who can arrange an update for you.

Figure 1: TRACE32 Version

2 Embedded Artists LPC4088 Guide 21 October 2013

About this document

This document will explain how to get up and running with the Lauterbach µTrace unit and the Embedded
Artists LPC4088 development board. The document partners with a zip file containing the examples and
configuration scripts described herein.

Two examples are provided: one runs a simple loop on the Cortex-M3 core in the device; the other runs
the FreeRTOS demo program provided as part of the sample code from Embedded Artists.

Pre-Requisites

The Lauterbach TRACE32 software for µTrace has been installed. It is assumed that this has been installed
to the default location of C:\T32_uTrace. It will be referred to as $T32SYS in the rest of this document.
No changes were made from the default jumper settings.

TRACE32 Build 48187 or later is required for the LPC4088
device. This can be found by selecting
About TRACE32... from the Help menu. You will see
something like Figure1. The version has been highlighted in
this image.

You may also need a FLASH update package to include
support for the LPC40xx devices. You will need the
$T32SYS\demo\arm\flash\lpc40xx.cmm file dated
Monday 21st October 2013 or later. The date can be found
by looking at the end of the comments section (around line
90) of the file.

This version does not yet support the peripheral register
view. Only the core Cortex-M3 registers are available.

If your version is older than this or you do not have the
FLASH programming scripts please contact your local
Lauterbach representative who can arrange an update for you.

Figure 1: TRACE32 Version



3 Embedded Artists LPC4088 Guide 21 October 2013

Setup Procedures

Unzip the archive EA_LPC4088.zip so that it over-writes files in the $T32SYS directory. You may wish to
take a backup of this directory beforehand.

Connect the CombiProbe header to Socket A on the µTrace.

Connect the CombiProbe header (using the MIPI34-MIPI20T
adapter) to socket J10 on the main board (see Figure 2). Take
care to make sure that the connector is correctly aligned. The
header on the board is not keyed. Pin 1 is furthest from the
red dial.

In tests here, the board was powered with a 5V external
power supply connected to J24, not the mini USB connector
at J25.

Power on the μTrace and then power on the LPC4088 board.

Start the TRACE32 software and you
should see something like Figure 3.

From the File menu, select Run Batchfile..., browse to $T32SYS and select
startup.cmm. You should see a window which looks like

Figure 4. Detailed use of this script is beyond the scope of
this document but more information can be found in the
accompanying Startup Guide.pdf.

TRACE32 can be configured to call this script each time you
start it up. To do this, edit the t32.cmm file in the $T32SYS
directory. At the bottom of the file, just before the line that
reads "ENDDO" add a line which reads

do startup.cmm

For now, click the LOAD button and browse for the basic_demo.t32ini file which is located in

$T32SYS\Eval Boards\Embedded Artists\LPC4088

Figure 2: J10 on main board

Figure 3: TRACE32

Figure 4: startup.cmm

3 Embedded Artists LPC4088 Guide 21 October 2013

Setup Procedures

Unzip the archive EA_LPC4088.zip so that it over-writes files in the $T32SYS directory. You may wish to
take a backup of this directory beforehand.

Connect the CombiProbe header to Socket A on the µTrace.

Connect the CombiProbe header (using the MIPI34-MIPI20T
adapter) to socket J10 on the main board (see Figure 2). Take
care to make sure that the connector is correctly aligned. The
header on the board is not keyed. Pin 1 is furthest from the
red dial.

In tests here, the board was powered with a 5V external
power supply connected to J24, not the mini USB connector
at J25.

Power on the μTrace and then power on the LPC4088 board.

Start the TRACE32 software and you
should see something like Figure 3.

From the File menu, select Run Batchfile..., browse to $T32SYS and select
startup.cmm. You should see a window which looks like

Figure 4. Detailed use of this script is beyond the scope of
this document but more information can be found in the
accompanying Startup Guide.pdf.

TRACE32 can be configured to call this script each time you
start it up. To do this, edit the t32.cmm file in the $T32SYS
directory. At the bottom of the file, just before the line that
reads "ENDDO" add a line which reads

do startup.cmm

For now, click the LOAD button and browse for the basic_demo.t32ini file which is located in

$T32SYS\Eval Boards\Embedded Artists\LPC4088

Figure 2: J10 on main board

Figure 3: TRACE32

Figure 4: startup.cmm

3 Embedded Artists LPC4088 Guide 21 October 2013

Setup Procedures

Unzip the archive EA_LPC4088.zip so that it over-writes files in the $T32SYS directory. You may wish to
take a backup of this directory beforehand.

Connect the CombiProbe header to Socket A on the µTrace.

Connect the CombiProbe header (using the MIPI34-MIPI20T
adapter) to socket J10 on the main board (see Figure 2). Take
care to make sure that the connector is correctly aligned. The
header on the board is not keyed. Pin 1 is furthest from the
red dial.

In tests here, the board was powered with a 5V external
power supply connected to J24, not the mini USB connector
at J25.

Power on the μTrace and then power on the LPC4088 board.

Start the TRACE32 software and you
should see something like Figure 3.

From the File menu, select Run Batchfile..., browse to $T32SYS and select
startup.cmm. You should see a window which looks like

Figure 4. Detailed use of this script is beyond the scope of
this document but more information can be found in the
accompanying Startup Guide.pdf.

TRACE32 can be configured to call this script each time you
start it up. To do this, edit the t32.cmm file in the $T32SYS
directory. At the bottom of the file, just before the line that
reads "ENDDO" add a line which reads

do startup.cmm

For now, click the LOAD button and browse for the basic_demo.t32ini file which is located in

$T32SYS\Eval Boards\Embedded Artists\LPC4088

Figure 2: J10 on main board

Figure 3: TRACE32

Figure 4: startup.cmm



4 Embedded Artists LPC4088 Guide 21 October 2013

directory. This will populate some of the fields in the startup window. Click the big start button to launch
the demo. The target will be
initialised, a small application
will be downloaded and
some basic windows opened
so that TRACE32 will now
look like Figure 5.

This will give you JTAG
control of the target. The
connection is via the Serial
Wire Debug (SWD) interface
to the Cortex-M3.

Trace Setup

No modifications are required to the board to collect ETM trace data. The hardware_init.cmm script
sets the correct pin multiplexing for the LPC4088 device to enable off-chip trace collection.

Care should be taken whenever the CPU clock exceeds 80MHz as the chip, by default, does not provide
sufficient drive strength to the pins to get the trace data off-chip. It is recommended that the user study
the user_init.cmm script in the FreeRTOS example directory for more information .

NXP officially  rate the trace pins at 80MHz and suggest users try it for themselves above that. In tests with
this board I have achieved 120MHz and others have reported up to 132MHz on other LPC4088 based
designs.

FreeRTOS Example

The second example loads the FreeRTOS example program provided by Embedded Artists. The directory
contains the executable and the main.c source file. For the purposes of the example, this is all that’s
required. Everything else can be downloaded from the Embedded Artists website, using the serial number
that came with your board.

Connect the hardware and start TRACE32 as outlined in the previous example. Run the startup.cmm
script and load the initialisation file located at:

$T32SYS\Eval Boards\Embedded Artists\LPC4088\freertos_demo.t32ini

Figure 5: Demo loaded

4 Embedded Artists LPC4088 Guide 21 October 2013

directory. This will populate some of the fields in the startup window. Click the big start button to launch
the demo. The target will be
initialised, a small application
will be downloaded and
some basic windows opened
so that TRACE32 will now
look like Figure 5.

This will give you JTAG
control of the target. The
connection is via the Serial
Wire Debug (SWD) interface
to the Cortex-M3.

Trace Setup

No modifications are required to the board to collect ETM trace data. The hardware_init.cmm script
sets the correct pin multiplexing for the LPC4088 device to enable off-chip trace collection.

Care should be taken whenever the CPU clock exceeds 80MHz as the chip, by default, does not provide
sufficient drive strength to the pins to get the trace data off-chip. It is recommended that the user study
the user_init.cmm script in the FreeRTOS example directory for more information .

NXP officially  rate the trace pins at 80MHz and suggest users try it for themselves above that. In tests with
this board I have achieved 120MHz and others have reported up to 132MHz on other LPC4088 based
designs.

FreeRTOS Example

The second example loads the FreeRTOS example program provided by Embedded Artists. The directory
contains the executable and the main.c source file. For the purposes of the example, this is all that’s
required. Everything else can be downloaded from the Embedded Artists website, using the serial number
that came with your board.

Connect the hardware and start TRACE32 as outlined in the previous example. Run the startup.cmm
script and load the initialisation file located at:

$T32SYS\Eval Boards\Embedded Artists\LPC4088\freertos_demo.t32ini

Figure 5: Demo loaded

4 Embedded Artists LPC4088 Guide 21 October 2013

directory. This will populate some of the fields in the startup window. Click the big start button to launch
the demo. The target will be
initialised, a small application
will be downloaded and
some basic windows opened
so that TRACE32 will now
look like Figure 5.

This will give you JTAG
control of the target. The
connection is via the Serial
Wire Debug (SWD) interface
to the Cortex-M3.

Trace Setup

No modifications are required to the board to collect ETM trace data. The hardware_init.cmm script
sets the correct pin multiplexing for the LPC4088 device to enable off-chip trace collection.

Care should be taken whenever the CPU clock exceeds 80MHz as the chip, by default, does not provide
sufficient drive strength to the pins to get the trace data off-chip. It is recommended that the user study
the user_init.cmm script in the FreeRTOS example directory for more information .

NXP officially  rate the trace pins at 80MHz and suggest users try it for themselves above that. In tests with
this board I have achieved 120MHz and others have reported up to 132MHz on other LPC4088 based
designs.

FreeRTOS Example

The second example loads the FreeRTOS example program provided by Embedded Artists. The directory
contains the executable and the main.c source file. For the purposes of the example, this is all that’s
required. Everything else can be downloaded from the Embedded Artists website, using the serial number
that came with your board.

Connect the hardware and start TRACE32 as outlined in the previous example. Run the startup.cmm
script and load the initialisation file located at:

$T32SYS\Eval Boards\Embedded Artists\LPC4088\freertos_demo.t32ini

Figure 5: Demo loaded



5 Embedded Artists LPC4088 Guide 21 October 2013

Then click the big “start” button. You
will eventually be presented with a
display which looks like Figure 6. The
list of tasks is blank because the
scheduler hasn’t been started yet so no
tasks have been created.

Where a window or view is hatched out
like this it means that the data that
would normally fill it is unavailable.
During this example you may see the
source view window look like this. This
will be because the debugger is trying
to display some of the source files that
were used to build the example but they just aren’t there. If you click the Mode button in the Source View
window you will be able to see the dis-assembly listing.

For now, let’s get some tasks launched. Select Set… from the
Break menu and enter the text

prvQueueReceiveTask\12

in the address/expression box. This can be seen in Figure 7. Click
the OK button and then start the target running. The system will
halt when the receive task gets a message and the task listing
window will now be populated. It will look like Figure 8.

For the breakpoint we could have used an absolute address
or a symbol name but we used a combination of function
name and source line offset from the start of the function.

Figure 6: FreeRTOS demo Configuration

Figure 7: Set a breakpoint

Figure 8: FreeRTOS task list

5 Embedded Artists LPC4088 Guide 21 October 2013

Then click the big “start” button. You
will eventually be presented with a
display which looks like Figure 6. The
list of tasks is blank because the
scheduler hasn’t been started yet so no
tasks have been created.

Where a window or view is hatched out
like this it means that the data that
would normally fill it is unavailable.
During this example you may see the
source view window look like this. This
will be because the debugger is trying
to display some of the source files that
were used to build the example but they just aren’t there. If you click the Mode button in the Source View
window you will be able to see the dis-assembly listing.

For now, let’s get some tasks launched. Select Set… from the
Break menu and enter the text

prvQueueReceiveTask\12

in the address/expression box. This can be seen in Figure 7. Click
the OK button and then start the target running. The system will
halt when the receive task gets a message and the task listing
window will now be populated. It will look like Figure 8.

For the breakpoint we could have used an absolute address
or a symbol name but we used a combination of function
name and source line offset from the start of the function.

Figure 6: FreeRTOS demo Configuration

Figure 7: Set a breakpoint

Figure 8: FreeRTOS task list

5 Embedded Artists LPC4088 Guide 21 October 2013

Then click the big “start” button. You
will eventually be presented with a
display which looks like Figure 6. The
list of tasks is blank because the
scheduler hasn’t been started yet so no
tasks have been created.

Where a window or view is hatched out
like this it means that the data that
would normally fill it is unavailable.
During this example you may see the
source view window look like this. This
will be because the debugger is trying
to display some of the source files that
were used to build the example but they just aren’t there. If you click the Mode button in the Source View
window you will be able to see the dis-assembly listing.

For now, let’s get some tasks launched. Select Set… from the
Break menu and enter the text

prvQueueReceiveTask\12

in the address/expression box. This can be seen in Figure 7. Click
the OK button and then start the target running. The system will
halt when the receive task gets a message and the task listing
window will now be populated. It will look like Figure 8.

For the breakpoint we could have used an absolute address
or a symbol name but we used a combination of function
name and source line offset from the start of the function.

Figure 6: FreeRTOS demo Configuration

Figure 7: Set a breakpoint

Figure 8: FreeRTOS task list



6 Embedded Artists LPC4088 Guide 21 October 2013

Tutorials

This section will provide some basic tutorials to help familiarise users with the TRACE32 concept.

Run Control
The target can be controlled via the buttons at the top of the
List window or using the control buttons on the toolbar.
See Figure T1. Users can also right-click on a line of code in
any List window and select Go Till to run to a
particular point. If you wish to run to known symbol the GO
command can be entered on the command line. See Figure
T2 for an example that will cause the debugger to run the
target until the entry of function func14 is reached.

Breakpoints
Double-click a source line in any List window to set a default
breakpoint. Right-click a line or variable for more control over
a breakpoint. For even finer control of breakpoints select
Set... from the Break menu - see Figure T3.

Change the settings to match figure T3 and click OK. Start the
target running and it will halt at line 681 where the first write
of 1 to variable flags[3] occurs.

Task aware, conditional and counting breakpoints can all be
set. Click the advanced button to access these extra settings. Discussion of these options is beyond the
scope of this document but should be reasonably self-explanatory.

The Vector catch unit can be programmed by selecting the OnChip Trigger... option from the
Break menu.

Registers
CPU registers can be viewed by using the Register
command or by selecting CPU Registers from the CPU
menu. This command can take a /SPOTLIGHT option which
causes the last four sets of deltas to the window contents to
be highlighted. See Figure T4. Double-click a register to
change its contents or right-click for indirect views.

Figure T1: Run Control Buttons

Figure T2: The Go command

Figure T3: Break.set

Figure T4: Highlighted Registers

6 Embedded Artists LPC4088 Guide 21 October 2013

Tutorials

This section will provide some basic tutorials to help familiarise users with the TRACE32 concept.

Run Control
The target can be controlled via the buttons at the top of the
List window or using the control buttons on the toolbar.
See Figure T1. Users can also right-click on a line of code in
any List window and select Go Till to run to a
particular point. If you wish to run to known symbol the GO
command can be entered on the command line. See Figure
T2 for an example that will cause the debugger to run the
target until the entry of function func14 is reached.

Breakpoints
Double-click a source line in any List window to set a default
breakpoint. Right-click a line or variable for more control over
a breakpoint. For even finer control of breakpoints select
Set... from the Break menu - see Figure T3.

Change the settings to match figure T3 and click OK. Start the
target running and it will halt at line 681 where the first write
of 1 to variable flags[3] occurs.

Task aware, conditional and counting breakpoints can all be
set. Click the advanced button to access these extra settings. Discussion of these options is beyond the
scope of this document but should be reasonably self-explanatory.

The Vector catch unit can be programmed by selecting the OnChip Trigger... option from the
Break menu.

Registers
CPU registers can be viewed by using the Register
command or by selecting CPU Registers from the CPU
menu. This command can take a /SPOTLIGHT option which
causes the last four sets of deltas to the window contents to
be highlighted. See Figure T4. Double-click a register to
change its contents or right-click for indirect views.

Figure T1: Run Control Buttons

Figure T2: The Go command

Figure T3: Break.set

Figure T4: Highlighted Registers

6 Embedded Artists LPC4088 Guide 21 October 2013

Tutorials

This section will provide some basic tutorials to help familiarise users with the TRACE32 concept.

Run Control
The target can be controlled via the buttons at the top of the
List window or using the control buttons on the toolbar.
See Figure T1. Users can also right-click on a line of code in
any List window and select Go Till to run to a
particular point. If you wish to run to known symbol the GO
command can be entered on the command line. See Figure
T2 for an example that will cause the debugger to run the
target until the entry of function func14 is reached.

Breakpoints
Double-click a source line in any List window to set a default
breakpoint. Right-click a line or variable for more control over
a breakpoint. For even finer control of breakpoints select
Set... from the Break menu - see Figure T3.

Change the settings to match figure T3 and click OK. Start the
target running and it will halt at line 681 where the first write
of 1 to variable flags[3] occurs.

Task aware, conditional and counting breakpoints can all be
set. Click the advanced button to access these extra settings. Discussion of these options is beyond the
scope of this document but should be reasonably self-explanatory.

The Vector catch unit can be programmed by selecting the OnChip Trigger... option from the
Break menu.

Registers
CPU registers can be viewed by using the Register
command or by selecting CPU Registers from the CPU
menu. This command can take a /SPOTLIGHT option which
causes the last four sets of deltas to the window contents to
be highlighted. See Figure T4. Double-click a register to
change its contents or right-click for indirect views.

Figure T1: Run Control Buttons

Figure T2: The Go command

Figure T3: Break.set

Figure T4: Highlighted Registers



7 Embedded Artists LPC4088 Guide 21 October 2013

The processor's peripheral control registers can be accessed via a dedicated
menu which is dynamically added at runtime once the

user has made their CPU selection. From here all of the
different sub-systems can be selected. A global view
can also be obtained by selecting Peripherals from
the CPU menu. An example can be seen in figure T5.
This window can also take the /SPOTLIGHT option to
highlight any changes to the contents.

A left-click on any of the registers or bit-fields will
cause the address and bits to be displayed in TRACE32
status line.

A right-click on any of the bit-fields will pop up a menu with a list of allowable values.

Variables
Variables can have their value displayed by left-clicking them in any window.
Variables can be dragged to a view or watch window. Local
and global variables can be shown by selecting the
appropriate options from the View or Var menus. Right-
clicking a variable opens up a menu with a number of
options for viewing it. A few are shown in figure T6.
Variables can be displayed graphically, in tables, can be
cast to other variable types. Memory can be cast to a
variable type for display and there are special options for
frame buffers, linked lists and waveforms.

Macros can be created that will take variable values and
convert them to real world values, such as volts from an
ADC reading.

Try displaying the array flags[] in function sieve in a number of different ways.

go sieve

Right-click flags and look at the options under other.

Where the processor supports it and the debugger has been configured for dualport memory access
variable values can be displayed and updated non-intrusively whilst the Cortex-M is executing code.

Figure T5: Peripheral Registers

Figure T6: Variable Views

7 Embedded Artists LPC4088 Guide 21 October 2013

The processor's peripheral control registers can be accessed via a dedicated
menu which is dynamically added at runtime once the

user has made their CPU selection. From here all of the
different sub-systems can be selected. A global view
can also be obtained by selecting Peripherals from
the CPU menu. An example can be seen in figure T5.
This window can also take the /SPOTLIGHT option to
highlight any changes to the contents.

A left-click on any of the registers or bit-fields will
cause the address and bits to be displayed in TRACE32
status line.

A right-click on any of the bit-fields will pop up a menu with a list of allowable values.

Variables
Variables can have their value displayed by left-clicking them in any window.
Variables can be dragged to a view or watch window. Local
and global variables can be shown by selecting the
appropriate options from the View or Var menus. Right-
clicking a variable opens up a menu with a number of
options for viewing it. A few are shown in figure T6.
Variables can be displayed graphically, in tables, can be
cast to other variable types. Memory can be cast to a
variable type for display and there are special options for
frame buffers, linked lists and waveforms.

Macros can be created that will take variable values and
convert them to real world values, such as volts from an
ADC reading.

Try displaying the array flags[] in function sieve in a number of different ways.

go sieve

Right-click flags and look at the options under other.

Where the processor supports it and the debugger has been configured for dualport memory access
variable values can be displayed and updated non-intrusively whilst the Cortex-M is executing code.

Figure T5: Peripheral Registers

Figure T6: Variable Views

7 Embedded Artists LPC4088 Guide 21 October 2013

The processor's peripheral control registers can be accessed via a dedicated
menu which is dynamically added at runtime once the

user has made their CPU selection. From here all of the
different sub-systems can be selected. A global view
can also be obtained by selecting Peripherals from
the CPU menu. An example can be seen in figure T5.
This window can also take the /SPOTLIGHT option to
highlight any changes to the contents.

A left-click on any of the registers or bit-fields will
cause the address and bits to be displayed in TRACE32
status line.

A right-click on any of the bit-fields will pop up a menu with a list of allowable values.

Variables
Variables can have their value displayed by left-clicking them in any window.
Variables can be dragged to a view or watch window. Local
and global variables can be shown by selecting the
appropriate options from the View or Var menus. Right-
clicking a variable opens up a menu with a number of
options for viewing it. A few are shown in figure T6.
Variables can be displayed graphically, in tables, can be
cast to other variable types. Memory can be cast to a
variable type for display and there are special options for
frame buffers, linked lists and waveforms.

Macros can be created that will take variable values and
convert them to real world values, such as volts from an
ADC reading.

Try displaying the array flags[] in function sieve in a number of different ways.

go sieve

Right-click flags and look at the options under other.

Where the processor supports it and the debugger has been configured for dualport memory access
variable values can be displayed and updated non-intrusively whilst the Cortex-M is executing code.

Figure T5: Peripheral Registers

Figure T6: Variable Views



8 Embedded Artists LPC4088 Guide 21 October 2013

Memory
Memory can be viewed by selecting Dump... from the View menu. Enter the
address to view and set any relevant options. A

window will be displayed like figure T7. Memory
can be searched for a pattern. Memory can be filled
with a pattern or a test pattern. Two ranges can be
compared or a CRC can be calculated for a given
range. A walking bit test can also be performed
over a memory region.

All memory view windows can have the
/SPOTLIGHT option added to them allowing the highlight of any changes in contents. Each value has a
right-click menu behind it providing access to further options.

Try the following:

var.view flags /SPOTLIGHT
data.dump flags /dialog /SPOTLIGHT

Change the values in one window and the values in the other will be highlighted.

Performance Analysis
A sample based performance analysis capability is provided. This can be accessed by selecting Perf
Configuration... from the Perf menu. An entire book could be written on this window alone so
instead a few examples will be provided to get you started.

This is a sample based metric and may or may not be intrusive depending upon the core chosen. If the
DWT in the chosen core supports the PC Snoop mode, the
sampling will be made non-intrusively. This can be checked
by opening the Data Watchpoint and Trace
setting from the Peripheral Registers view and checking
the availability of PCSAMPLEENA. See Figure T8. PC Snoop
is available on all Cortex-M4 cores, all Cortex-M0+ cores,
and all Cortex-M3 cores of r2p0 or newer.

If this is available non-intrusive metrics can be collected. Set the METHOD in the Perf window to Snoop.

If not, the target will need to be halted to read the Program Counter for the samples. Set the METHOD in
the Perf window to StopAndGo.

To view relative function runtime analysis:
Set the METHOD as described above
Set the Mode to PC
Set the state to OFF
Click the ListFunc button
Start the target running

An example is shown in figure T9.

Figure T7: Memory Dump

Figure T8: PC Snoop

Figure T9: PC Snoop

8 Embedded Artists LPC4088 Guide 21 October 2013

Memory
Memory can be viewed by selecting Dump... from the View menu. Enter the
address to view and set any relevant options. A

window will be displayed like figure T7. Memory
can be searched for a pattern. Memory can be filled
with a pattern or a test pattern. Two ranges can be
compared or a CRC can be calculated for a given
range. A walking bit test can also be performed
over a memory region.

All memory view windows can have the
/SPOTLIGHT option added to them allowing the highlight of any changes in contents. Each value has a
right-click menu behind it providing access to further options.

Try the following:

var.view flags /SPOTLIGHT
data.dump flags /dialog /SPOTLIGHT

Change the values in one window and the values in the other will be highlighted.

Performance Analysis
A sample based performance analysis capability is provided. This can be accessed by selecting Perf
Configuration... from the Perf menu. An entire book could be written on this window alone so
instead a few examples will be provided to get you started.

This is a sample based metric and may or may not be intrusive depending upon the core chosen. If the
DWT in the chosen core supports the PC Snoop mode, the
sampling will be made non-intrusively. This can be checked
by opening the Data Watchpoint and Trace
setting from the Peripheral Registers view and checking
the availability of PCSAMPLEENA. See Figure T8. PC Snoop
is available on all Cortex-M4 cores, all Cortex-M0+ cores,
and all Cortex-M3 cores of r2p0 or newer.

If this is available non-intrusive metrics can be collected. Set the METHOD in the Perf window to Snoop.

If not, the target will need to be halted to read the Program Counter for the samples. Set the METHOD in
the Perf window to StopAndGo.

To view relative function runtime analysis:
Set the METHOD as described above
Set the Mode to PC
Set the state to OFF
Click the ListFunc button
Start the target running

An example is shown in figure T9.

Figure T7: Memory Dump

Figure T8: PC Snoop

Figure T9: PC Snoop

8 Embedded Artists LPC4088 Guide 21 October 2013

Memory
Memory can be viewed by selecting Dump... from the View menu. Enter the
address to view and set any relevant options. A

window will be displayed like figure T7. Memory
can be searched for a pattern. Memory can be filled
with a pattern or a test pattern. Two ranges can be
compared or a CRC can be calculated for a given
range. A walking bit test can also be performed
over a memory region.

All memory view windows can have the
/SPOTLIGHT option added to them allowing the highlight of any changes in contents. Each value has a
right-click menu behind it providing access to further options.

Try the following:

var.view flags /SPOTLIGHT
data.dump flags /dialog /SPOTLIGHT

Change the values in one window and the values in the other will be highlighted.

Performance Analysis
A sample based performance analysis capability is provided. This can be accessed by selecting Perf
Configuration... from the Perf menu. An entire book could be written on this window alone so
instead a few examples will be provided to get you started.

This is a sample based metric and may or may not be intrusive depending upon the core chosen. If the
DWT in the chosen core supports the PC Snoop mode, the
sampling will be made non-intrusively. This can be checked
by opening the Data Watchpoint and Trace
setting from the Peripheral Registers view and checking
the availability of PCSAMPLEENA. See Figure T8. PC Snoop
is available on all Cortex-M4 cores, all Cortex-M0+ cores,
and all Cortex-M3 cores of r2p0 or newer.

If this is available non-intrusive metrics can be collected. Set the METHOD in the Perf window to Snoop.

If not, the target will need to be halted to read the Program Counter for the samples. Set the METHOD in
the Perf window to StopAndGo.

To view relative function runtime analysis:
Set the METHOD as described above
Set the Mode to PC
Set the state to OFF
Click the ListFunc button
Start the target running

An example is shown in figure T9.

Figure T7: Memory Dump

Figure T8: PC Snoop

Figure T9: PC Snoop



9 Embedded Artists LPC4088 Guide 21 October 2013

To view data values:
Set the METHOD as described above
Set the Mode to Memory
Set the State to OFF
Set SnoopAddress to flags
Set SnoopSize to Long
Click the ListDistrib button
Start the target running

An example is shown in figure T10.

On-Line Help

If Adobe Acrobat Reader is installed on your PC before you install TRACE32 for µTrace, a help plug-in will
be automatically configured. Help can be accessed at any time by pressing the F1 key. Partially type a
command and press F1 and after a few seconds wait the appropriate page of the documentation will be
opened up in the Acrobat Reader. Click and window and press F1 and help for that window will be
displayed. Additional help can be found on the Help menu, including a search capability and a target
manual which describes in more detail the debug capabilities of the family of cores you are working with:
No. breakpoints, non-intrusive memory access, dealing with watchdogs, etc.

There is an issue with Adobe Reader 10 which causes the right book to be opened but not the correct page
to be displayed.

You can also contact your local Lauterbach representative if you have any questions about the operation of
the µTrace unit or the TRACE32 software interface. A list can be found at:

http://www.lauterbach.com/tsupport.html

Figure T10: Data Snoop

9 Embedded Artists LPC4088 Guide 21 October 2013

To view data values:
Set the METHOD as described above
Set the Mode to Memory
Set the State to OFF
Set SnoopAddress to flags
Set SnoopSize to Long
Click the ListDistrib button
Start the target running

An example is shown in figure T10.

On-Line Help

If Adobe Acrobat Reader is installed on your PC before you install TRACE32 for µTrace, a help plug-in will
be automatically configured. Help can be accessed at any time by pressing the F1 key. Partially type a
command and press F1 and after a few seconds wait the appropriate page of the documentation will be
opened up in the Acrobat Reader. Click and window and press F1 and help for that window will be
displayed. Additional help can be found on the Help menu, including a search capability and a target
manual which describes in more detail the debug capabilities of the family of cores you are working with:
No. breakpoints, non-intrusive memory access, dealing with watchdogs, etc.

There is an issue with Adobe Reader 10 which causes the right book to be opened but not the correct page
to be displayed.

You can also contact your local Lauterbach representative if you have any questions about the operation of
the µTrace unit or the TRACE32 software interface. A list can be found at:

http://www.lauterbach.com/tsupport.html

Figure T10: Data Snoop

9 Embedded Artists LPC4088 Guide 21 October 2013

To view data values:
Set the METHOD as described above
Set the Mode to Memory
Set the State to OFF
Set SnoopAddress to flags
Set SnoopSize to Long
Click the ListDistrib button
Start the target running

An example is shown in figure T10.

On-Line Help

If Adobe Acrobat Reader is installed on your PC before you install TRACE32 for µTrace, a help plug-in will
be automatically configured. Help can be accessed at any time by pressing the F1 key. Partially type a
command and press F1 and after a few seconds wait the appropriate page of the documentation will be
opened up in the Acrobat Reader. Click and window and press F1 and help for that window will be
displayed. Additional help can be found on the Help menu, including a search capability and a target
manual which describes in more detail the debug capabilities of the family of cores you are working with:
No. breakpoints, non-intrusive memory access, dealing with watchdogs, etc.

There is an issue with Adobe Reader 10 which causes the right book to be opened but not the correct page
to be displayed.

You can also contact your local Lauterbach representative if you have any questions about the operation of
the µTrace unit or the TRACE32 software interface. A list can be found at:

http://www.lauterbach.com/tsupport.html

Figure T10: Data Snoop



10 Embedded Artists LPC4088 Guide 21 October 2013

Trace Examples

All of the previous tutorials have been using the JTAG or SWD interface. The next batch will look at using
the off-chip trace or ETM. The example scripts configure the trace port and pins but the board still needs to
be modified as described on page 4 so that the trace signals are available for the µTrace to capture.

Basic Trace Collection

Select Configuration from the Trace menu. You should get a window
like that in figure T11. Make sure that the METHOD is set to
CAnalyzer and the state is set to OFF. Ensure that the AutoArm box
is ticked. This allows tracing to start and stop as the target CPU starts
and stops.

Start the target and let it run for a few seconds before stopping it
again. There should be a blue bar in the used box to indicate the
number of trace records captured. This should number in the tens or
hundreds of thousand for a few seconds of run time. If it is less than
a hundred or so you may need to check the resistor positioning as
there appears to be no meaningful trace data.

Once you have some trace data captured, click the List button and see the program flow information. The
window will look like figure T12. Click the More or Less
buttons to filter the amount of information displayed in
the window.

The trace data can be searched. Click the Find button
and enter the text “sieve” into the address/expression
box. Then click the Find All button. This will show a
window that looks like figure T13 with all occurrences of
calls to the function sieve in the trace buffer. Clicking on
any of these will cause the trace listing window to jump to
that point in the buffer so you can see the program flow
around that event.

The ti.back column in the search results window shows
the time between function calls. It should average out at
around 72.5us.

By default there is no data trace on the Cortex-M so data
reads and writes will not be traced and cannot be
searched for. However, if the DWT on your device supports it you can use a data breakpoint (up to four of
them are allowed for in the Cortex-M specification but the actual number is core specific) to cause a data
trace event to be injected into the trace stream. Care should be taken when doing this as data trace
packets cannot be as easily compressed as the program flow trace packets and you may get an internal
trace FIFO overflow and some data will be lost.

Figure T11: Trace Configuration

Figure T12: Program flow trace

Figure T13: Search Results

10 Embedded Artists LPC4088 Guide 21 October 2013

Trace Examples

All of the previous tutorials have been using the JTAG or SWD interface. The next batch will look at using
the off-chip trace or ETM. The example scripts configure the trace port and pins but the board still needs to
be modified as described on page 4 so that the trace signals are available for the µTrace to capture.

Basic Trace Collection

Select Configuration from the Trace menu. You should get a window
like that in figure T11. Make sure that the METHOD is set to
CAnalyzer and the state is set to OFF. Ensure that the AutoArm box
is ticked. This allows tracing to start and stop as the target CPU starts
and stops.

Start the target and let it run for a few seconds before stopping it
again. There should be a blue bar in the used box to indicate the
number of trace records captured. This should number in the tens or
hundreds of thousand for a few seconds of run time. If it is less than
a hundred or so you may need to check the resistor positioning as
there appears to be no meaningful trace data.

Once you have some trace data captured, click the List button and see the program flow information. The
window will look like figure T12. Click the More or Less
buttons to filter the amount of information displayed in
the window.

The trace data can be searched. Click the Find button
and enter the text “sieve” into the address/expression
box. Then click the Find All button. This will show a
window that looks like figure T13 with all occurrences of
calls to the function sieve in the trace buffer. Clicking on
any of these will cause the trace listing window to jump to
that point in the buffer so you can see the program flow
around that event.

The ti.back column in the search results window shows
the time between function calls. It should average out at
around 72.5us.

By default there is no data trace on the Cortex-M so data
reads and writes will not be traced and cannot be
searched for. However, if the DWT on your device supports it you can use a data breakpoint (up to four of
them are allowed for in the Cortex-M specification but the actual number is core specific) to cause a data
trace event to be injected into the trace stream. Care should be taken when doing this as data trace
packets cannot be as easily compressed as the program flow trace packets and you may get an internal
trace FIFO overflow and some data will be lost.

Figure T11: Trace Configuration

Figure T12: Program flow trace

Figure T13: Search Results

10 Embedded Artists LPC4088 Guide 21 October 2013

Trace Examples

All of the previous tutorials have been using the JTAG or SWD interface. The next batch will look at using
the off-chip trace or ETM. The example scripts configure the trace port and pins but the board still needs to
be modified as described on page 4 so that the trace signals are available for the µTrace to capture.

Basic Trace Collection

Select Configuration from the Trace menu. You should get a window
like that in figure T11. Make sure that the METHOD is set to
CAnalyzer and the state is set to OFF. Ensure that the AutoArm box
is ticked. This allows tracing to start and stop as the target CPU starts
and stops.

Start the target and let it run for a few seconds before stopping it
again. There should be a blue bar in the used box to indicate the
number of trace records captured. This should number in the tens or
hundreds of thousand for a few seconds of run time. If it is less than
a hundred or so you may need to check the resistor positioning as
there appears to be no meaningful trace data.

Once you have some trace data captured, click the List button and see the program flow information. The
window will look like figure T12. Click the More or Less
buttons to filter the amount of information displayed in
the window.

The trace data can be searched. Click the Find button
and enter the text “sieve” into the address/expression
box. Then click the Find All button. This will show a
window that looks like figure T13 with all occurrences of
calls to the function sieve in the trace buffer. Clicking on
any of these will cause the trace listing window to jump to
that point in the buffer so you can see the program flow
around that event.

The ti.back column in the search results window shows
the time between function calls. It should average out at
around 72.5us.

By default there is no data trace on the Cortex-M so data
reads and writes will not be traced and cannot be
searched for. However, if the DWT on your device supports it you can use a data breakpoint (up to four of
them are allowed for in the Cortex-M specification but the actual number is core specific) to cause a data
trace event to be injected into the trace stream. Care should be taken when doing this as data trace
packets cannot be as easily compressed as the program flow trace packets and you may get an internal
trace FIFO overflow and some data will be lost.

Figure T11: Trace Configuration

Figure T12: Program flow trace

Figure T13: Search Results



11 Embedded Artists LPC4088 Guide 21 October 2013

In the trace list window, click the Chart button to see
a view of functions against time, similar to that in
Figure T14. The example shown here has been
zoomed in to show individual functions against the
timeline on the horizontal axis.

The zoom can be controlled in a number of ways:
- Click the In and Out buttons
- Click on the chart and use the mouse scroll

wheel to zoom in and out
- Click and drag to select an area of the chart

and then left click within it to zoom it to the
full size of the window

- Double-click on the chart but do not release
the second mouse click. Move the mouse up
and down to zoom in and out around the point clicked on.

Code Coverage

With program flow trace available it is easy
to get code coverage information. Select
Add Tracebuffer from the Cov menu.
This will add the contents of the current
trace buffer to the existing code coverage
database. Like this multiple test runs can be
aggregated. Now select List functions
from the Cov menu. You should see a
window like that in Figure T15.

Any of the functions can be expanded by
clicking on the “+” icon to see individual sources lines. Expand func11, which has only partial coverage, to
see which lines haven’t been covered. Double-click on line 438—438 to see more detail about that line
which only has partial coverage. You should see a
modified source view window similar to Figure T16. If
you toggle the Mode button to switch to High Level
Language (HLL) view you will see that only the default
case in the switch statement has ever been executed.

Figure T14: Trace Chart

Figure T15: Function level code coverage

Figure T16: Low level code coverage

11 Embedded Artists LPC4088 Guide 21 October 2013

In the trace list window, click the Chart button to see
a view of functions against time, similar to that in
Figure T14. The example shown here has been
zoomed in to show individual functions against the
timeline on the horizontal axis.

The zoom can be controlled in a number of ways:
- Click the In and Out buttons
- Click on the chart and use the mouse scroll

wheel to zoom in and out
- Click and drag to select an area of the chart

and then left click within it to zoom it to the
full size of the window

- Double-click on the chart but do not release
the second mouse click. Move the mouse up
and down to zoom in and out around the point clicked on.

Code Coverage

With program flow trace available it is easy
to get code coverage information. Select
Add Tracebuffer from the Cov menu.
This will add the contents of the current
trace buffer to the existing code coverage
database. Like this multiple test runs can be
aggregated. Now select List functions
from the Cov menu. You should see a
window like that in Figure T15.

Any of the functions can be expanded by
clicking on the “+” icon to see individual sources lines. Expand func11, which has only partial coverage, to
see which lines haven’t been covered. Double-click on line 438—438 to see more detail about that line
which only has partial coverage. You should see a
modified source view window similar to Figure T16. If
you toggle the Mode button to switch to High Level
Language (HLL) view you will see that only the default
case in the switch statement has ever been executed.

Figure T14: Trace Chart

Figure T15: Function level code coverage

Figure T16: Low level code coverage

11 Embedded Artists LPC4088 Guide 21 October 2013

In the trace list window, click the Chart button to see
a view of functions against time, similar to that in
Figure T14. The example shown here has been
zoomed in to show individual functions against the
timeline on the horizontal axis.

The zoom can be controlled in a number of ways:
- Click the In and Out buttons
- Click on the chart and use the mouse scroll

wheel to zoom in and out
- Click and drag to select an area of the chart

and then left click within it to zoom it to the
full size of the window

- Double-click on the chart but do not release
the second mouse click. Move the mouse up
and down to zoom in and out around the point clicked on.

Code Coverage

With program flow trace available it is easy
to get code coverage information. Select
Add Tracebuffer from the Cov menu.
This will add the contents of the current
trace buffer to the existing code coverage
database. Like this multiple test runs can be
aggregated. Now select List functions
from the Cov menu. You should see a
window like that in Figure T15.

Any of the functions can be expanded by
clicking on the “+” icon to see individual sources lines. Expand func11, which has only partial coverage, to
see which lines haven’t been covered. Double-click on line 438—438 to see more detail about that line
which only has partial coverage. You should see a
modified source view window similar to Figure T16. If
you toggle the Mode button to switch to High Level
Language (HLL) view you will see that only the default
case in the switch statement has ever been executed.

Figure T14: Trace Chart

Figure T15: Function level code coverage

Figure T16: Low level code coverage



12 Embedded Artists LPC4088 Guide 21 October 2013

Performance Analysis

Collect some trace data and then from the
Perf menu select Function Runtime
and then Show Detailed Tree. You
will get something similar to Figure T17.
Figure T17 has had some of the irrelevant
columns removed from the display so that
it more easily fits this page.

For the sample period, this view shows the
minimum, maximum and mean time spent
in each function. It also shows time
consumed by any sub-functions and the number of times each function was called.

Each function has a right-click menu on it to provide more detailed analysis of call trees, runtimes and
distance between calls to a function. Try some of the options and see what you can learn about this code.
For example, right-click func1 and select Linkage or Parents from the menu.

Trace Based Debugging

Collect some trace and then select CTS Settings from the
Trace menu. You will see a window like that shown in Figure T18.
Change the state to ON. This will take anything from a few seconds
to several minutes to process, depending upon how much trace
data you have sampled and how fast your connection to the µTrace
unit is.

When it has finished processing, the buttons in any List windows
will become yellow and some new buttons will be added:

- Step back over
- Step back into
- Go back to Entry
-

See Figure T19 for this. This allows users to step and run
backwards and forwards through a reconstruction of
the system context at any point during the period that
was sampled into the trace buffer. You can inspect the
contents of memory, registers and variables as far as
they can be reconstructed. Where something cannot be
reconstructed it’s value will be replaced with ‘????’.

Additional entries in the List window’s right-click
menu will be added:

- Go Till
- Go Back Till

Figure T17: Detailed Performance Measurements

Figure T18: CTS Settings

Figure T19: New Run Control Buttons

12 Embedded Artists LPC4088 Guide 21 October 2013

Performance Analysis

Collect some trace data and then from the
Perf menu select Function Runtime
and then Show Detailed Tree. You
will get something similar to Figure T17.
Figure T17 has had some of the irrelevant
columns removed from the display so that
it more easily fits this page.

For the sample period, this view shows the
minimum, maximum and mean time spent
in each function. It also shows time
consumed by any sub-functions and the number of times each function was called.

Each function has a right-click menu on it to provide more detailed analysis of call trees, runtimes and
distance between calls to a function. Try some of the options and see what you can learn about this code.
For example, right-click func1 and select Linkage or Parents from the menu.

Trace Based Debugging

Collect some trace and then select CTS Settings from the
Trace menu. You will see a window like that shown in Figure T18.
Change the state to ON. This will take anything from a few seconds
to several minutes to process, depending upon how much trace
data you have sampled and how fast your connection to the µTrace
unit is.

When it has finished processing, the buttons in any List windows
will become yellow and some new buttons will be added:

- Step back over
- Step back into
- Go back to Entry
-

See Figure T19 for this. This allows users to step and run
backwards and forwards through a reconstruction of
the system context at any point during the period that
was sampled into the trace buffer. You can inspect the
contents of memory, registers and variables as far as
they can be reconstructed. Where something cannot be
reconstructed it’s value will be replaced with ‘????’.

Additional entries in the List window’s right-click
menu will be added:

- Go Till
- Go Back Till

Figure T17: Detailed Performance Measurements

Figure T18: CTS Settings

Figure T19: New Run Control Buttons

12 Embedded Artists LPC4088 Guide 21 October 2013

Performance Analysis

Collect some trace data and then from the
Perf menu select Function Runtime
and then Show Detailed Tree. You
will get something similar to Figure T17.
Figure T17 has had some of the irrelevant
columns removed from the display so that
it more easily fits this page.

For the sample period, this view shows the
minimum, maximum and mean time spent
in each function. It also shows time
consumed by any sub-functions and the number of times each function was called.

Each function has a right-click menu on it to provide more detailed analysis of call trees, runtimes and
distance between calls to a function. Try some of the options and see what you can learn about this code.
For example, right-click func1 and select Linkage or Parents from the menu.

Trace Based Debugging

Collect some trace and then select CTS Settings from the
Trace menu. You will see a window like that shown in Figure T18.
Change the state to ON. This will take anything from a few seconds
to several minutes to process, depending upon how much trace
data you have sampled and how fast your connection to the µTrace
unit is.

When it has finished processing, the buttons in any List windows
will become yellow and some new buttons will be added:

- Step back over
- Step back into
- Go back to Entry
-

See Figure T19 for this. This allows users to step and run
backwards and forwards through a reconstruction of
the system context at any point during the period that
was sampled into the trace buffer. You can inspect the
contents of memory, registers and variables as far as
they can be reconstructed. Where something cannot be
reconstructed it’s value will be replaced with ‘????’.

Additional entries in the List window’s right-click
menu will be added:

- Go Till
- Go Back Till

Figure T17: Detailed Performance Measurements

Figure T18: CTS Settings

Figure T19: New Run Control Buttons



13 Embedded Artists LPC4088 Guide 21 October 2013

Clicking the List button in the CTS window will open a different view of the trace data, showing function
nesting and function and instruction runtimes. Each of the functions can be expanded. Where data values
can be reconstructed the change in variable will be shown at each step. An example can be seen in Figure
T20.

A chart view can be constructed from this window
by clicking the Chart button.

Right-clicking any line of code in the CTS.List
window or right-clicking anywhere in the
CTS.Chart window will cause a menu to popup.
Select Set CTS and all windows will be updated to
reflect the state of the target as reconstructed at
that point in history. Using this allows users to
quickly zone in the actual cause of a bug rather
than just trapping on the subsequent error caused
by the bug.

Before ‘normal’ debugging can be resumed the CTS mode must be exited. The can be done by setting the
state to OFF in the CTS window or by entering the command CTS.OFF.

Figure T20: CTS.List view

13 Embedded Artists LPC4088 Guide 21 October 2013

Clicking the List button in the CTS window will open a different view of the trace data, showing function
nesting and function and instruction runtimes. Each of the functions can be expanded. Where data values
can be reconstructed the change in variable will be shown at each step. An example can be seen in Figure
T20.

A chart view can be constructed from this window
by clicking the Chart button.

Right-clicking any line of code in the CTS.List
window or right-clicking anywhere in the
CTS.Chart window will cause a menu to popup.
Select Set CTS and all windows will be updated to
reflect the state of the target as reconstructed at
that point in history. Using this allows users to
quickly zone in the actual cause of a bug rather
than just trapping on the subsequent error caused
by the bug.

Before ‘normal’ debugging can be resumed the CTS mode must be exited. The can be done by setting the
state to OFF in the CTS window or by entering the command CTS.OFF.

Figure T20: CTS.List view

13 Embedded Artists LPC4088 Guide 21 October 2013

Clicking the List button in the CTS window will open a different view of the trace data, showing function
nesting and function and instruction runtimes. Each of the functions can be expanded. Where data values
can be reconstructed the change in variable will be shown at each step. An example can be seen in Figure
T20.

A chart view can be constructed from this window
by clicking the Chart button.

Right-clicking any line of code in the CTS.List
window or right-clicking anywhere in the
CTS.Chart window will cause a menu to popup.
Select Set CTS and all windows will be updated to
reflect the state of the target as reconstructed at
that point in history. Using this allows users to
quickly zone in the actual cause of a bug rather
than just trapping on the subsequent error caused
by the bug.

Before ‘normal’ debugging can be resumed the CTS mode must be exited. The can be done by setting the
state to OFF in the CTS window or by entering the command CTS.OFF.

Figure T20: CTS.List view



14 Embedded Artists LPC4088 Guide 21 October 2013

RTOS Aware Examples

General

When a Kernel awareness package has been loaded a system specific menu is added to the debugger. This
contains new menu options which allow Kernel or system objects to be displayed. This could be a list of
task, semaphores, events or message queues. It could be stack usage or special symbol loading operations.
Generally, whatever makes sense for the target RTOS; not all RTOSes support all features.

More detail on your chosen RTOS and the interaction with the TRACE32 software can be found in the
$T32SYS\pdf directory. Look for the rtos_<your_chosen_rtos>.pdf file. For example:
rtos_freertos.pdf.

Task Listing

Select Display Tasks from the FreeRTOS menu. This will
show a list of all tasks on the system and a summary of their state.
An example can be seen in Figure T21. There is always a right-click
menu on the number in the magic column for each task. Double-
clicking the magic number will open a window showing the task
control block.

Message Queues

Selecting Display Queues from the FreeRTOS
menu will prompt you to browse for a message queue
variable. Once you have selected this a window will open
showing the status of the queue and any tasks blocked on
it. An example can be seen in Figure T22. Again, there is a right-click menu on the “magic” number for each
queue.

Display Stack Usage

The Kernel Awareness can provide details of stack usage for each task. Select:

FreeRTOS->Stack Coverage->List Stacks

for a display similar to Figure T23.

This shows the stack frame for each task,
the current stack pointer and (if the RTOS
supports it) the maximum stack usage by that task.

Figure T21: FreeRTOS Task List

Figure T22: FreeRTOS Message Queue

Figure T23: FreeRTOS Stack Information

14 Embedded Artists LPC4088 Guide 21 October 2013

RTOS Aware Examples

General

When a Kernel awareness package has been loaded a system specific menu is added to the debugger. This
contains new menu options which allow Kernel or system objects to be displayed. This could be a list of
task, semaphores, events or message queues. It could be stack usage or special symbol loading operations.
Generally, whatever makes sense for the target RTOS; not all RTOSes support all features.

More detail on your chosen RTOS and the interaction with the TRACE32 software can be found in the
$T32SYS\pdf directory. Look for the rtos_<your_chosen_rtos>.pdf file. For example:
rtos_freertos.pdf.

Task Listing

Select Display Tasks from the FreeRTOS menu. This will
show a list of all tasks on the system and a summary of their state.
An example can be seen in Figure T21. There is always a right-click
menu on the number in the magic column for each task. Double-
clicking the magic number will open a window showing the task
control block.

Message Queues

Selecting Display Queues from the FreeRTOS
menu will prompt you to browse for a message queue
variable. Once you have selected this a window will open
showing the status of the queue and any tasks blocked on
it. An example can be seen in Figure T22. Again, there is a right-click menu on the “magic” number for each
queue.

Display Stack Usage

The Kernel Awareness can provide details of stack usage for each task. Select:

FreeRTOS->Stack Coverage->List Stacks

for a display similar to Figure T23.

This shows the stack frame for each task,
the current stack pointer and (if the RTOS
supports it) the maximum stack usage by that task.

Figure T21: FreeRTOS Task List

Figure T22: FreeRTOS Message Queue

Figure T23: FreeRTOS Stack Information

14 Embedded Artists LPC4088 Guide 21 October 2013

RTOS Aware Examples

General

When a Kernel awareness package has been loaded a system specific menu is added to the debugger. This
contains new menu options which allow Kernel or system objects to be displayed. This could be a list of
task, semaphores, events or message queues. It could be stack usage or special symbol loading operations.
Generally, whatever makes sense for the target RTOS; not all RTOSes support all features.

More detail on your chosen RTOS and the interaction with the TRACE32 software can be found in the
$T32SYS\pdf directory. Look for the rtos_<your_chosen_rtos>.pdf file. For example:
rtos_freertos.pdf.

Task Listing

Select Display Tasks from the FreeRTOS menu. This will
show a list of all tasks on the system and a summary of their state.
An example can be seen in Figure T21. There is always a right-click
menu on the number in the magic column for each task. Double-
clicking the magic number will open a window showing the task
control block.

Message Queues

Selecting Display Queues from the FreeRTOS
menu will prompt you to browse for a message queue
variable. Once you have selected this a window will open
showing the status of the queue and any tasks blocked on
it. An example can be seen in Figure T22. Again, there is a right-click menu on the “magic” number for each
queue.

Display Stack Usage

The Kernel Awareness can provide details of stack usage for each task. Select:

FreeRTOS->Stack Coverage->List Stacks

for a display similar to Figure T23.

This shows the stack frame for each task,
the current stack pointer and (if the RTOS
supports it) the maximum stack usage by that task.

Figure T21: FreeRTOS Task List

Figure T22: FreeRTOS Message Queue

Figure T23: FreeRTOS Stack Information



15 Embedded Artists LPC4088 Guide 21 October 2013

Task Stack Frames

The current Stack Frame or call stack can be shown by selecting Stackframe from the View menu.
When a Kernel Awareness is loaded the task dropdown
becomes activated and allows users to display the call stack
for any running task in the system. Simply select the required
task. To return to the current task, select the blank line at the
top of the list. An example can be seen in Figure T24.

Task aware breakpoints

Task aware breakpoints can be set. Open the Break.Set window
and expand it to full size by clicking the Advanced button. For the
address/expression fill in the variable ulReceivedValue. Change
the type to "Write". Finally, in the task drop down select task "Rx".
You should have something like Figure T25. Click the "OK" button to
set the breakpoint.

From the Break menu select the List option to display a list of all
current breakpoints.

Start the target running and it will eventually halt in a block of
assembly code at the label "lastbytes:". In the Break.List
window the breakpoint which caused the halt will be highlighted in
yellow. An example of this can be seen in Figure T26.

Right-click the breakpoint and select Change...
from the pop-up menu. In the resulting
Break.Set window (which should have the
breakpoint details already filled in) change the
task from "Rx" to "TX". Click the "OK" button to change the breakpoint and start the target running again.
This time it will not halt as the writes to ulReceivedValue occur outside of the context of task "Rx".

Figure T24: FreeRTOS Task Call Stack

Figure T25: Task Aware Breakpoint

Figure T26: Active Breakpoint

15 Embedded Artists LPC4088 Guide 21 October 2013

Task Stack Frames

The current Stack Frame or call stack can be shown by selecting Stackframe from the View menu.
When a Kernel Awareness is loaded the task dropdown
becomes activated and allows users to display the call stack
for any running task in the system. Simply select the required
task. To return to the current task, select the blank line at the
top of the list. An example can be seen in Figure T24.

Task aware breakpoints

Task aware breakpoints can be set. Open the Break.Set window
and expand it to full size by clicking the Advanced button. For the
address/expression fill in the variable ulReceivedValue. Change
the type to "Write". Finally, in the task drop down select task "Rx".
You should have something like Figure T25. Click the "OK" button to
set the breakpoint.

From the Break menu select the List option to display a list of all
current breakpoints.

Start the target running and it will eventually halt in a block of
assembly code at the label "lastbytes:". In the Break.List
window the breakpoint which caused the halt will be highlighted in
yellow. An example of this can be seen in Figure T26.

Right-click the breakpoint and select Change...
from the pop-up menu. In the resulting
Break.Set window (which should have the
breakpoint details already filled in) change the
task from "Rx" to "TX". Click the "OK" button to change the breakpoint and start the target running again.
This time it will not halt as the writes to ulReceivedValue occur outside of the context of task "Rx".

Figure T24: FreeRTOS Task Call Stack

Figure T25: Task Aware Breakpoint

Figure T26: Active Breakpoint

15 Embedded Artists LPC4088 Guide 21 October 2013

Task Stack Frames

The current Stack Frame or call stack can be shown by selecting Stackframe from the View menu.
When a Kernel Awareness is loaded the task dropdown
becomes activated and allows users to display the call stack
for any running task in the system. Simply select the required
task. To return to the current task, select the blank line at the
top of the list. An example can be seen in Figure T24.

Task aware breakpoints

Task aware breakpoints can be set. Open the Break.Set window
and expand it to full size by clicking the Advanced button. For the
address/expression fill in the variable ulReceivedValue. Change
the type to "Write". Finally, in the task drop down select task "Rx".
You should have something like Figure T25. Click the "OK" button to
set the breakpoint.

From the Break menu select the List option to display a list of all
current breakpoints.

Start the target running and it will eventually halt in a block of
assembly code at the label "lastbytes:". In the Break.List
window the breakpoint which caused the halt will be highlighted in
yellow. An example of this can be seen in Figure T26.

Right-click the breakpoint and select Change...
from the pop-up menu. In the resulting
Break.Set window (which should have the
breakpoint details already filled in) change the
task from "Rx" to "TX". Click the "OK" button to change the breakpoint and start the target running again.
This time it will not halt as the writes to ulReceivedValue occur outside of the context of task "Rx".

Figure T24: FreeRTOS Task Call Stack

Figure T25: Task Aware Breakpoint

Figure T26: Active Breakpoint



16 Embedded Artists LPC4088 Guide 21 October 2013

Task aware tracing

Click the new icon ( )that has been added to the toolbar. The target will run for 6 seconds whilst it
collects some trace data. Once the data has been collected four new windows will be opened showing task
switch data.  The results will look like Figure T27.

Clicking any Windows and pressing F1 will open the documentation to give you more information about
the window.

The top window shows detailed runtime statistics of all tasks in the system. Additional columns can be
added but shown initially are total time spent in, minimum, maximum and mean times for each task.

The second window shows task switches over time. This behaves as the Trace chart windows described
earlier for panning and zooming.

The bottom right window lists all task switches and the time between each (approx. 800us in this example).
Left-clicking any of these will cause the bottom left window to jump to that point in the trace buffer so you
can see the circumstances around that event.

To return to the previous display, right-click any of the grey background and select P000
from the pop-up menu.

Figure T27: Task Runtime Statistics

16 Embedded Artists LPC4088 Guide 21 October 2013

Task aware tracing

Click the new icon ( )that has been added to the toolbar. The target will run for 6 seconds whilst it
collects some trace data. Once the data has been collected four new windows will be opened showing task
switch data.  The results will look like Figure T27.

Clicking any Windows and pressing F1 will open the documentation to give you more information about
the window.

The top window shows detailed runtime statistics of all tasks in the system. Additional columns can be
added but shown initially are total time spent in, minimum, maximum and mean times for each task.

The second window shows task switches over time. This behaves as the Trace chart windows described
earlier for panning and zooming.

The bottom right window lists all task switches and the time between each (approx. 800us in this example).
Left-clicking any of these will cause the bottom left window to jump to that point in the trace buffer so you
can see the circumstances around that event.

To return to the previous display, right-click any of the grey background and select P000
from the pop-up menu.

Figure T27: Task Runtime Statistics

16 Embedded Artists LPC4088 Guide 21 October 2013

Task aware tracing

Click the new icon ( )that has been added to the toolbar. The target will run for 6 seconds whilst it
collects some trace data. Once the data has been collected four new windows will be opened showing task
switch data.  The results will look like Figure T27.

Clicking any Windows and pressing F1 will open the documentation to give you more information about
the window.

The top window shows detailed runtime statistics of all tasks in the system. Additional columns can be
added but shown initially are total time spent in, minimum, maximum and mean times for each task.

The second window shows task switches over time. This behaves as the Trace chart windows described
earlier for panning and zooming.

The bottom right window lists all task switches and the time between each (approx. 800us in this example).
Left-clicking any of these will cause the bottom left window to jump to that point in the trace buffer so you
can see the circumstances around that event.

To return to the previous display, right-click any of the grey background and select P000
from the pop-up menu.

Figure T27: Task Runtime Statistics


