
1 μTrace Startup Guide 16 October 2013

Using the startup script with µTrace

1 μTrace Startup Guide 16 October 2013

Using the startup script with µTrace

1 μTrace Startup Guide 16 October 2013

Using the startup script with µTrace

2 μTrace Startup Guide 16 October 2013

About this document

This document describes the functionality and provides usage information for the startup.cmm script.
This script is designed to simplify the setup of a new target for use with the Lauterbach μTrace system.

Pre-Requisites

The Lauterbach TRACE32 software for μTrace has been installed. It is assumed that this has been installed
to the default location of C:\T32_uTrace. It will be referred to as $T32SYS in the rest of this document.
This document assumes no prior knowledge of the Lauterbach TRACE32 software or the μTrace hardware.

Setup Procedures

The startup.cmm script is usually supplied as part of a board support package and is unzipped into the
$T32SYS directory. You may wish to take a backup of this directory beforehand.

Connect the CombiProbe header to Socket A on the μTrace.

Connect the CombiProbe header (using the appropriate adapter) to the debug header on the target board.
More information for specific targets will be
provided in the startup guide included with
the BSP.

It is recommended to power on the μTrace
unit first and then power on the target board.

Start the TRACE32 software and you should
see something like Figure 1. A link will have
been created in the start menu during the
program’s installation. You may have a
shortcut created elsewhere for convenience.

From the File menu, select Run Batchfile..., browse to
$T32SYS and select startup.cmm. You should see a window
which looks like Figure 2.

TRACE32 can be configured to call this script each time you start
it up. To do this, edit the t32.cmm file in the $T32SYS directory.
At the bottom of the file, just before the line that reads "ENDDO"
add a line which reads

do startup.cmm

The startup.cmm script can be called with an optional argument
which represents a default configuration to load. For example:

do startup.cmm C:\T32_uTrace\my_LPC1768.t32ini

Figure 1: TRACE32

Figure 2: startup.cmm

2 μTrace Startup Guide 16 October 2013

About this document

This document describes the functionality and provides usage information for the startup.cmm script.
This script is designed to simplify the setup of a new target for use with the Lauterbach μTrace system.

Pre-Requisites

The Lauterbach TRACE32 software for μTrace has been installed. It is assumed that this has been installed
to the default location of C:\T32_uTrace. It will be referred to as $T32SYS in the rest of this document.
This document assumes no prior knowledge of the Lauterbach TRACE32 software or the μTrace hardware.

Setup Procedures

The startup.cmm script is usually supplied as part of a board support package and is unzipped into the
$T32SYS directory. You may wish to take a backup of this directory beforehand.

Connect the CombiProbe header to Socket A on the μTrace.

Connect the CombiProbe header (using the appropriate adapter) to the debug header on the target board.
More information for specific targets will be
provided in the startup guide included with
the BSP.

It is recommended to power on the μTrace
unit first and then power on the target board.

Start the TRACE32 software and you should
see something like Figure 1. A link will have
been created in the start menu during the
program’s installation. You may have a
shortcut created elsewhere for convenience.

From the File menu, select Run Batchfile..., browse to
$T32SYS and select startup.cmm. You should see a window
which looks like Figure 2.

TRACE32 can be configured to call this script each time you start
it up. To do this, edit the t32.cmm file in the $T32SYS directory.
At the bottom of the file, just before the line that reads "ENDDO"
add a line which reads

do startup.cmm

The startup.cmm script can be called with an optional argument
which represents a default configuration to load. For example:

do startup.cmm C:\T32_uTrace\my_LPC1768.t32ini

Figure 1: TRACE32

Figure 2: startup.cmm

2 μTrace Startup Guide 16 October 2013

About this document

This document describes the functionality and provides usage information for the startup.cmm script.
This script is designed to simplify the setup of a new target for use with the Lauterbach μTrace system.

Pre-Requisites

The Lauterbach TRACE32 software for μTrace has been installed. It is assumed that this has been installed
to the default location of C:\T32_uTrace. It will be referred to as $T32SYS in the rest of this document.
This document assumes no prior knowledge of the Lauterbach TRACE32 software or the μTrace hardware.

Setup Procedures

The startup.cmm script is usually supplied as part of a board support package and is unzipped into the
$T32SYS directory. You may wish to take a backup of this directory beforehand.

Connect the CombiProbe header to Socket A on the μTrace.

Connect the CombiProbe header (using the appropriate adapter) to the debug header on the target board.
More information for specific targets will be
provided in the startup guide included with
the BSP.

It is recommended to power on the μTrace
unit first and then power on the target board.

Start the TRACE32 software and you should
see something like Figure 1. A link will have
been created in the start menu during the
program’s installation. You may have a
shortcut created elsewhere for convenience.

From the File menu, select Run Batchfile..., browse to
$T32SYS and select startup.cmm. You should see a window
which looks like Figure 2.

TRACE32 can be configured to call this script each time you start
it up. To do this, edit the t32.cmm file in the $T32SYS directory.
At the bottom of the file, just before the line that reads "ENDDO"
add a line which reads

do startup.cmm

The startup.cmm script can be called with an optional argument
which represents a default configuration to load. For example:

do startup.cmm C:\T32_uTrace\my_LPC1768.t32ini

Figure 1: TRACE32

Figure 2: startup.cmm

3 μTrace Startup Guide 16 October 2013

Basic Configuration

If you are using the script to load a default configuration for a board support package that you have
installed then follow the instructions provided in the guide for your target. In summary, it will be clicking
the Load button and browsing for a setup configuration and then clicking the big Start button.

This next section will provide more information on using the interface to create or modify your own
configuration file(s).

If at any time you need a reminder or some more information on the options
and what they do, click on the “?” button alongside and a help message will be
displayed. An example of the CPU help can be seen in Figure 3. All of the options
have some help text associated with them.

The TRACE32 software has an on-line help feature. Selecting a window or
partially entering a command and then pressing F1 will cause the Adobe Acrobat
Reader (if installed) to load the correct help file and display the appropriate
page.

Target Details

Figure 4 shows the options available for the initial
hardware setup.

The first step is to enter the CPU type that is on the
target board. Click the “…” button a browse window will
open that allows you to select from a list of supported
processors. The list has a text field at the top where you
can enter a wildcard pattern and all matches will be displayed. Double-click the
correct entry to close the pop-up and fill in the field on the main window with
the selected value. An example can be seen in Figure 5.

Pay attention to the letters and numbers that sometimes appear after the main
processor name. These can be important for selecting which package you have
and will ensure that the correct hardware settings are used by the debugger.
This could be things like FLASH and RAM sizes and base addresses or number of
breakpoints, etc.

Next, select the connection type to the target board. The options are:
- Serial Wire Debug (SWD)
- JTAG
- cJTAG

Figure 3: Help display

Figure 4: Target Details

Figure 5: CPU Selection

3 μTrace Startup Guide 16 October 2013

Basic Configuration

If you are using the script to load a default configuration for a board support package that you have
installed then follow the instructions provided in the guide for your target. In summary, it will be clicking
the Load button and browsing for a setup configuration and then clicking the big Start button.

This next section will provide more information on using the interface to create or modify your own
configuration file(s).

If at any time you need a reminder or some more information on the options
and what they do, click on the “?” button alongside and a help message will be
displayed. An example of the CPU help can be seen in Figure 3. All of the options
have some help text associated with them.

The TRACE32 software has an on-line help feature. Selecting a window or
partially entering a command and then pressing F1 will cause the Adobe Acrobat
Reader (if installed) to load the correct help file and display the appropriate
page.

Target Details

Figure 4 shows the options available for the initial
hardware setup.

The first step is to enter the CPU type that is on the
target board. Click the “…” button a browse window will
open that allows you to select from a list of supported
processors. The list has a text field at the top where you
can enter a wildcard pattern and all matches will be displayed. Double-click the
correct entry to close the pop-up and fill in the field on the main window with
the selected value. An example can be seen in Figure 5.

Pay attention to the letters and numbers that sometimes appear after the main
processor name. These can be important for selecting which package you have
and will ensure that the correct hardware settings are used by the debugger.
This could be things like FLASH and RAM sizes and base addresses or number of
breakpoints, etc.

Next, select the connection type to the target board. The options are:
- Serial Wire Debug (SWD)
- JTAG
- cJTAG

Figure 3: Help display

Figure 4: Target Details

Figure 5: CPU Selection

3 μTrace Startup Guide 16 October 2013

Basic Configuration

If you are using the script to load a default configuration for a board support package that you have
installed then follow the instructions provided in the guide for your target. In summary, it will be clicking
the Load button and browsing for a setup configuration and then clicking the big Start button.

This next section will provide more information on using the interface to create or modify your own
configuration file(s).

If at any time you need a reminder or some more information on the options
and what they do, click on the “?” button alongside and a help message will be
displayed. An example of the CPU help can be seen in Figure 3. All of the options
have some help text associated with them.

The TRACE32 software has an on-line help feature. Selecting a window or
partially entering a command and then pressing F1 will cause the Adobe Acrobat
Reader (if installed) to load the correct help file and display the appropriate
page.

Target Details

Figure 4 shows the options available for the initial
hardware setup.

The first step is to enter the CPU type that is on the
target board. Click the “…” button a browse window will
open that allows you to select from a list of supported
processors. The list has a text field at the top where you
can enter a wildcard pattern and all matches will be displayed. Double-click the
correct entry to close the pop-up and fill in the field on the main window with
the selected value. An example can be seen in Figure 5.

Pay attention to the letters and numbers that sometimes appear after the main
processor name. These can be important for selecting which package you have
and will ensure that the correct hardware settings are used by the debugger.
This could be things like FLASH and RAM sizes and base addresses or number of
breakpoints, etc.

Next, select the connection type to the target board. The options are:
- Serial Wire Debug (SWD)
- JTAG
- cJTAG

Figure 3: Help display

Figure 4: Target Details

Figure 5: CPU Selection

4 μTrace Startup Guide 16 October 2013

You may need to refer to the chipset manual and/or board schematics to determine which you have. Many
Cortex-M devices start in JTAG mode and then allow the debugger to switch to SWD. If you are using one
of the 14 or 20 pin headers pitched at 0.1 inches then it is most likely that you have JTAG. If you are using
one of the 10, 20 or 34 pin headers pitched at 0.05 inches then you are probably using SWD.

If you are using one of the MIPI (small) connectors you will need to tell the debugger which one you are
using. This is only relevant if your connection type is SWD.

The final option in this section is to provide the
name of a hardware initialisation script that will be called
after the debugger has established the connection to the
core but before it does anything else. An example script
can be seen in Figure 6.

This script is designed to initialise any on-chip peripherals
or to setup any chip selects or memory interfaces beyond
what the basic JTAG/SWD reset would achieve. Here you
may disable a watchdog or configure it to halt when the
core is in debug mode. The example shown here is for an
LPC4357 device which has two cores: a Cortex-M4 and a
Cortex-M0. In this case we are only interested in the main
core so the script shuts the other one down. It then
detects if a μTrace is being used and configures the pin
multiplexing options so that trace data is available.

You can create your own script (or ask your local
Lauterbach representative if he has one already).
For more help with this you will need to refer to your
chipset documentation. The following Lauterbach help
files will also be useful:

Training_practice.pdf
Practice_ref.pdf
Practice_user.pdf

These can be found in $T32SYS\pdf.

;; Clear any pending Cortex-M0 interrupts
data.set ASD:0x40043130 %long 0x00

;; Disable any new Cortex-M0 interrupts
data.set ASD:0xE000E180 %long 0x00000002

IF UTRACE()
(

print "uTrace configuring TRACE pins"
; Enable trace pins
; Enable pin function on PF_[8..4]
Data.Set SD:0x40086790 %Long 0x00000022
Data.Set SD:0x40086794 %Long 0x00000023
Data.Set SD:0x40086798 %Long 0x00000023
Data.Set SD:0x4008679C %Long 0x00000023
Data.Set SD:0x400867A0 %Long 0x00000023

; Select external trace
ETM.ON
ITM.ON

ETM.PortMode Continuous
ETM.PortSize 4.

Trace.Method CAnalyzer
Trace.Off

)
ELSE
(

; Enable ETB SRAM at 0x2000C000
Data.Set SD:0x40043128 %Long 0x00000000

; Select ETB trace
ETM.ON

Trace.Method Onchip
Trace.OFF

)
enddo

Figure 6: Hardware Initialisation Script

4 μTrace Startup Guide 16 October 2013

You may need to refer to the chipset manual and/or board schematics to determine which you have. Many
Cortex-M devices start in JTAG mode and then allow the debugger to switch to SWD. If you are using one
of the 14 or 20 pin headers pitched at 0.1 inches then it is most likely that you have JTAG. If you are using
one of the 10, 20 or 34 pin headers pitched at 0.05 inches then you are probably using SWD.

If you are using one of the MIPI (small) connectors you will need to tell the debugger which one you are
using. This is only relevant if your connection type is SWD.

The final option in this section is to provide the
name of a hardware initialisation script that will be called
after the debugger has established the connection to the
core but before it does anything else. An example script
can be seen in Figure 6.

This script is designed to initialise any on-chip peripherals
or to setup any chip selects or memory interfaces beyond
what the basic JTAG/SWD reset would achieve. Here you
may disable a watchdog or configure it to halt when the
core is in debug mode. The example shown here is for an
LPC4357 device which has two cores: a Cortex-M4 and a
Cortex-M0. In this case we are only interested in the main
core so the script shuts the other one down. It then
detects if a μTrace is being used and configures the pin
multiplexing options so that trace data is available.

You can create your own script (or ask your local
Lauterbach representative if he has one already).
For more help with this you will need to refer to your
chipset documentation. The following Lauterbach help
files will also be useful:

Training_practice.pdf
Practice_ref.pdf
Practice_user.pdf

These can be found in $T32SYS\pdf.

;; Clear any pending Cortex-M0 interrupts
data.set ASD:0x40043130 %long 0x00

;; Disable any new Cortex-M0 interrupts
data.set ASD:0xE000E180 %long 0x00000002

IF UTRACE()
(
print "uTrace configuring TRACE pins"
; Enable trace pins
; Enable pin function on PF_[8..4]
Data.Set SD:0x40086790 %Long 0x00000022
Data.Set SD:0x40086794 %Long 0x00000023
Data.Set SD:0x40086798 %Long 0x00000023
Data.Set SD:0x4008679C %Long 0x00000023
Data.Set SD:0x400867A0 %Long 0x00000023

; Select external trace
ETM.ON
ITM.ON

ETM.PortMode Continuous
ETM.PortSize 4.

Trace.Method CAnalyzer
Trace.Off

)
ELSE
(
; Enable ETB SRAM at 0x2000C000
Data.Set SD:0x40043128 %Long 0x00000000

; Select ETB trace
ETM.ON

Trace.Method Onchip
Trace.OFF

)
enddo

Figure 6: Hardware Initialisation Script

4 μTrace Startup Guide 16 October 2013

You may need to refer to the chipset manual and/or board schematics to determine which you have. Many
Cortex-M devices start in JTAG mode and then allow the debugger to switch to SWD. If you are using one
of the 14 or 20 pin headers pitched at 0.1 inches then it is most likely that you have JTAG. If you are using
one of the 10, 20 or 34 pin headers pitched at 0.05 inches then you are probably using SWD.

If you are using one of the MIPI (small) connectors you will need to tell the debugger which one you are
using. This is only relevant if your connection type is SWD.

The final option in this section is to provide the
name of a hardware initialisation script that will be called
after the debugger has established the connection to the
core but before it does anything else. An example script
can be seen in Figure 6.

This script is designed to initialise any on-chip peripherals
or to setup any chip selects or memory interfaces beyond
what the basic JTAG/SWD reset would achieve. Here you
may disable a watchdog or configure it to halt when the
core is in debug mode. The example shown here is for an
LPC4357 device which has two cores: a Cortex-M4 and a
Cortex-M0. In this case we are only interested in the main
core so the script shuts the other one down. It then
detects if a μTrace is being used and configures the pin
multiplexing options so that trace data is available.

You can create your own script (or ask your local
Lauterbach representative if he has one already).
For more help with this you will need to refer to your
chipset documentation. The following Lauterbach help
files will also be useful:

Training_practice.pdf
Practice_ref.pdf
Practice_user.pdf

These can be found in $T32SYS\pdf.

;; Clear any pending Cortex-M0 interrupts
data.set ASD:0x40043130 %long 0x00

;; Disable any new Cortex-M0 interrupts
data.set ASD:0xE000E180 %long 0x00000002

IF UTRACE()
(
print "uTrace configuring TRACE pins"
; Enable trace pins
; Enable pin function on PF_[8..4]
Data.Set SD:0x40086790 %Long 0x00000022
Data.Set SD:0x40086794 %Long 0x00000023
Data.Set SD:0x40086798 %Long 0x00000023
Data.Set SD:0x4008679C %Long 0x00000023
Data.Set SD:0x400867A0 %Long 0x00000023

; Select external trace
ETM.ON
ITM.ON

ETM.PortMode Continuous
ETM.PortSize 4.

Trace.Method CAnalyzer
Trace.Off

)
ELSE
(
; Enable ETB SRAM at 0x2000C000
Data.Set SD:0x40043128 %Long 0x00000000

; Select ETB trace
ETM.ON

Trace.Method Onchip
Trace.OFF

)
enddo

Figure 6: Hardware Initialisation Script

5 μTrace Startup Guide 16 October 2013

Application Details

Figure 7 shows the options for the application that is
to be debugged on the target.

The Symbol File is the executable that has been
produced by the compiler or IDE that you are using.
This should have been compiled with full debug info
and minimal optimisation to ensure a good debug experience. Clicking the "..." button will open a file
browse dialog to allow users to select the correct file.

From the RTOS Awareness dropdown users can choose which RTOS (if any) they have in their target
application. This will cause the debugger to load the correct Kernel Awareness plug-in as part of the
initialisation. For some choices additional information will need to be provided after the "Start" button has
been clicked. This is normally a confirmation of which version of an RTOS is being used as sometimes the
plug-ins are version specific. More information on the awareness for your RTOS can be found in the
$T32SYS\PDF directory. Look for the file that matches the pattern rtos_<your_rtos>.pdf, for
example rtos_freertos.pdf.

Ticking the "Load Image to VM" box will cause TRACE32 to load a copy of the application code into virtual
target memory. This is memory on the host PC that TRACE32 uses to mimic target memory. For some trace
analysis features, the performance can be improved by using this feature as the tool doesn't have to
continually refer to target memory via a slow JTAG connection. Don't select this option if you have self
modifying code or code that relocates at runtime.

Most debug format files (ELF, AXF, OUT, etc.) include information about the entry point to the code. If this
is present the debugger will place the Program Counter at this location after loading the file to target.
Often, users will not need to debug the low level board bring up code so ticking the "Run to main()" box
allows the debugger to skip this and will run the target until the main() function is reached.

FLASH Programming

Figure 8 shows the options for programming FLASH
or dealing with code already resident in FLASH on
the target.

Tick the "Enable FLASH" box to enable FLASH
programming and then click the "..." button to
select a FLASH programming algorithm. A file
browser will be opened showing a list of all supported FLASH algorithms. Select the appropriate one for
your device. If your device or family is not listed please contact your local Lauterbach representative.

If the application is already resident in FLASH then the debugger will only need to load the symbols, so
select "Symbols".

If the code to be loaded is a binary and does not contain any debug info, select "Code".

If the application is to be loaded to FLASH and then debugged, select "Both".

Figure 7: Application Details

Figure 8: FLASH Details

5 μTrace Startup Guide 16 October 2013

Application Details

Figure 7 shows the options for the application that is
to be debugged on the target.

The Symbol File is the executable that has been
produced by the compiler or IDE that you are using.
This should have been compiled with full debug info
and minimal optimisation to ensure a good debug experience. Clicking the "..." button will open a file
browse dialog to allow users to select the correct file.

From the RTOS Awareness dropdown users can choose which RTOS (if any) they have in their target
application. This will cause the debugger to load the correct Kernel Awareness plug-in as part of the
initialisation. For some choices additional information will need to be provided after the "Start" button has
been clicked. This is normally a confirmation of which version of an RTOS is being used as sometimes the
plug-ins are version specific. More information on the awareness for your RTOS can be found in the
$T32SYS\PDF directory. Look for the file that matches the pattern rtos_<your_rtos>.pdf, for
example rtos_freertos.pdf.

Ticking the "Load Image to VM" box will cause TRACE32 to load a copy of the application code into virtual
target memory. This is memory on the host PC that TRACE32 uses to mimic target memory. For some trace
analysis features, the performance can be improved by using this feature as the tool doesn't have to
continually refer to target memory via a slow JTAG connection. Don't select this option if you have self
modifying code or code that relocates at runtime.

Most debug format files (ELF, AXF, OUT, etc.) include information about the entry point to the code. If this
is present the debugger will place the Program Counter at this location after loading the file to target.
Often, users will not need to debug the low level board bring up code so ticking the "Run to main()" box
allows the debugger to skip this and will run the target until the main() function is reached.

FLASH Programming

Figure 8 shows the options for programming FLASH
or dealing with code already resident in FLASH on
the target.

Tick the "Enable FLASH" box to enable FLASH
programming and then click the "..." button to
select a FLASH programming algorithm. A file
browser will be opened showing a list of all supported FLASH algorithms. Select the appropriate one for
your device. If your device or family is not listed please contact your local Lauterbach representative.

If the application is already resident in FLASH then the debugger will only need to load the symbols, so
select "Symbols".

If the code to be loaded is a binary and does not contain any debug info, select "Code".

If the application is to be loaded to FLASH and then debugged, select "Both".

Figure 7: Application Details

Figure 8: FLASH Details

5 μTrace Startup Guide 16 October 2013

Application Details

Figure 7 shows the options for the application that is
to be debugged on the target.

The Symbol File is the executable that has been
produced by the compiler or IDE that you are using.
This should have been compiled with full debug info
and minimal optimisation to ensure a good debug experience. Clicking the "..." button will open a file
browse dialog to allow users to select the correct file.

From the RTOS Awareness dropdown users can choose which RTOS (if any) they have in their target
application. This will cause the debugger to load the correct Kernel Awareness plug-in as part of the
initialisation. For some choices additional information will need to be provided after the "Start" button has
been clicked. This is normally a confirmation of which version of an RTOS is being used as sometimes the
plug-ins are version specific. More information on the awareness for your RTOS can be found in the
$T32SYS\PDF directory. Look for the file that matches the pattern rtos_<your_rtos>.pdf, for
example rtos_freertos.pdf.

Ticking the "Load Image to VM" box will cause TRACE32 to load a copy of the application code into virtual
target memory. This is memory on the host PC that TRACE32 uses to mimic target memory. For some trace
analysis features, the performance can be improved by using this feature as the tool doesn't have to
continually refer to target memory via a slow JTAG connection. Don't select this option if you have self
modifying code or code that relocates at runtime.

Most debug format files (ELF, AXF, OUT, etc.) include information about the entry point to the code. If this
is present the debugger will place the Program Counter at this location after loading the file to target.
Often, users will not need to debug the low level board bring up code so ticking the "Run to main()" box
allows the debugger to skip this and will run the target until the main() function is reached.

FLASH Programming

Figure 8 shows the options for programming FLASH
or dealing with code already resident in FLASH on
the target.

Tick the "Enable FLASH" box to enable FLASH
programming and then click the "..." button to
select a FLASH programming algorithm. A file
browser will be opened showing a list of all supported FLASH algorithms. Select the appropriate one for
your device. If your device or family is not listed please contact your local Lauterbach representative.

If the application is already resident in FLASH then the debugger will only need to load the symbols, so
select "Symbols".

If the code to be loaded is a binary and does not contain any debug info, select "Code".

If the application is to be loaded to FLASH and then debugged, select "Both".

Figure 7: Application Details

Figure 8: FLASH Details

6 μTrace Startup Guide 16 October 2013

Source root only needs to be filled in if the target application was built on a different machine from the
one doing the debugging. Most debug format files include path information for the source files that were
used during the build. TRACE32 uses this information for displaying source code. If the source files are not
in the location specified in the debug file a new path needs to be used. This is entered here. Most of the
time this will not be needed and can be left blank.

Customisation

Figure 9 shows the final customisation options.

A Window layout file can be created by opening
all of the required windows in TRACE32 and then
select Store Windows to... from the
Window menu. Many different workspace layouts can be created and this option allows you to select a
default one to start.

Finally, an option is provided to call a custom
user script after everything else has been
setup. An example is shown in Figure 10.
This adds some extra manual configuration
for the FreeRTOS Kernel Awareness plug-in
and then creates a new button on the
toolbar to run specific set of commands to
collect ITM trace data on task switches, run
for 6 seconds and then show the analysis
windows. It also defines a custom bitmap for
the new button.

Figure 9: Customisation Details

task.config freertos 0. 100.*4
task.stack.pattern 0xa5

menu.rp
(
add
toolbar
(
toolitem "Task Aware Tracing Demo"
(

break.set task.config(magic) /write /TRACEDATA
ITM.DataTrace CorrelatedData
trace.autoinit ON
go
wait 6.s
break
break.delete task.config(magic)
WinPOS 0.14286 0.33333 149. 8. 25. 3. W006
WinTABS 9. 52.
Trace.STATistic.TASK

WinPOS 0.14286 14.833 149. 8. 25. 2. W007
Trace.CHART.TASK

)
[

BBBBBBBBBBBBBR
BWWWWWWWWWWWWB
BWWWWWWWWWWWWB
BXXWWWXWWXWWXB
BWWWWWWWWWWWWB
BWWWWWWXXWWWWB
BWWXXXWWWWXXWB
BWWWWWWWWWWWWB
BBBBBBBBBBBBBB

XXX XXX XXX X X
X X X X XX
X XXX XXX XX
X X X X X X
X X X XXX X X
]

)
)
enddo

Figure 10: User Script

6 μTrace Startup Guide 16 October 2013

Source root only needs to be filled in if the target application was built on a different machine from the
one doing the debugging. Most debug format files include path information for the source files that were
used during the build. TRACE32 uses this information for displaying source code. If the source files are not
in the location specified in the debug file a new path needs to be used. This is entered here. Most of the
time this will not be needed and can be left blank.

Customisation

Figure 9 shows the final customisation options.

A Window layout file can be created by opening
all of the required windows in TRACE32 and then
select Store Windows to... from the
Window menu. Many different workspace layouts can be created and this option allows you to select a
default one to start.

Finally, an option is provided to call a custom
user script after everything else has been
setup. An example is shown in Figure 10.
This adds some extra manual configuration
for the FreeRTOS Kernel Awareness plug-in
and then creates a new button on the
toolbar to run specific set of commands to
collect ITM trace data on task switches, run
for 6 seconds and then show the analysis
windows. It also defines a custom bitmap for
the new button.

Figure 9: Customisation Details

task.config freertos 0. 100.*4
task.stack.pattern 0xa5

menu.rp
(
add
toolbar
(

toolitem "Task Aware Tracing Demo"
(
break.set task.config(magic) /write /TRACEDATA
ITM.DataTrace CorrelatedData
trace.autoinit ON
go
wait 6.s
break
break.delete task.config(magic)
WinPOS 0.14286 0.33333 149. 8. 25. 3. W006
WinTABS 9. 52.
Trace.STATistic.TASK

WinPOS 0.14286 14.833 149. 8. 25. 2. W007
Trace.CHART.TASK

)
[

BBBBBBBBBBBBBR
BWWWWWWWWWWWWB
BWWWWWWWWWWWWB
BXXWWWXWWXWWXB
BWWWWWWWWWWWWB
BWWWWWWXXWWWWB
BWWXXXWWWWXXWB
BWWWWWWWWWWWWB
BBBBBBBBBBBBBB

XXX XXX XXX X X
X X X X XX
X XXX XXX XX
X X X X X X
X X X XXX X X

]
)

)
enddo

Figure 10: User Script

6 μTrace Startup Guide 16 October 2013

Source root only needs to be filled in if the target application was built on a different machine from the
one doing the debugging. Most debug format files include path information for the source files that were
used during the build. TRACE32 uses this information for displaying source code. If the source files are not
in the location specified in the debug file a new path needs to be used. This is entered here. Most of the
time this will not be needed and can be left blank.

Customisation

Figure 9 shows the final customisation options.

A Window layout file can be created by opening
all of the required windows in TRACE32 and then
select Store Windows to... from the
Window menu. Many different workspace layouts can be created and this option allows you to select a
default one to start.

Finally, an option is provided to call a custom
user script after everything else has been
setup. An example is shown in Figure 10.
This adds some extra manual configuration
for the FreeRTOS Kernel Awareness plug-in
and then creates a new button on the
toolbar to run specific set of commands to
collect ITM trace data on task switches, run
for 6 seconds and then show the analysis
windows. It also defines a custom bitmap for
the new button.

Figure 9: Customisation Details

task.config freertos 0. 100.*4
task.stack.pattern 0xa5

menu.rp
(

add
toolbar
(
toolitem "Task Aware Tracing Demo"
(

break.set task.config(magic) /write /TRACEDATA
ITM.DataTrace CorrelatedData
trace.autoinit ON
go
wait 6.s
break
break.delete task.config(magic)
WinPOS 0.14286 0.33333 149. 8. 25. 3. W006
WinTABS 9. 52.
Trace.STATistic.TASK

WinPOS 0.14286 14.833 149. 8. 25. 2. W007
Trace.CHART.TASK

)
[

BBBBBBBBBBBBBR
BWWWWWWWWWWWWB
BWWWWWWWWWWWWB
BXXWWWXWWXWWXB
BWWWWWWWWWWWWB
BWWWWWWXXWWWWB
BWWXXXWWWWXXWB
BWWWWWWWWWWWWB
BBBBBBBBBBBBBB

XXX XXX XXX X X
X X X X XX
X XXX XXX XX
X X X X X X
X X X XXX X X
]

)
)
enddo

Figure 10: User Script

7 μTrace Startup Guide 16 October 2013

And Finally...

Once the information for your target has been entered it can be saved to a .t32ini file. These can be re-
loaded or passed as an argument to the startup.cmm script when it is called. This has been discussed
earlier in this document. These features can be accessed by using the "LOAD" and "SAVE" buttons.

Once everything is complete, click the big "Start" button to run the configuration.

7 μTrace Startup Guide 16 October 2013

And Finally...

Once the information for your target has been entered it can be saved to a .t32ini file. These can be re-
loaded or passed as an argument to the startup.cmm script when it is called. This has been discussed
earlier in this document. These features can be accessed by using the "LOAD" and "SAVE" buttons.

Once everything is complete, click the big "Start" button to run the configuration.

7 μTrace Startup Guide 16 October 2013

And Finally...

Once the information for your target has been entered it can be saved to a .t32ini file. These can be re-
loaded or passed as an argument to the startup.cmm script when it is called. This has been discussed
earlier in this document. These features can be accessed by using the "LOAD" and "SAVE" buttons.

Once everything is complete, click the big "Start" button to run the configuration.

