Working with Cortex-M4 on iMX7 Dual

Copyright 2020 © Embedded Artists AB

Working with Cortex-M4 on
i.MX7 Dual

@ Embedded
Artists

Working with Cortex-M4 on iMX7 Dual Page 2

Embedded Artists AB
Jorgen Ankersgatan 12

SE-211 45 Malmé

Sweden

http://www.EmbeddedArtists.com

Copyright 2020 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of
Embedded Artists AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and
specifically disclaim any implied warranties or merchantability or fitness for any particular purpose.
Information in this publication is subject to change without notice and does not represent a
commitment on the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements on this document. Send your comments
by using the contact form: www.embeddedartists.com/contact.

Trademarks

All brand and product names mentioned herein are trademarks, services marks, registered
trademarks, or registered service marks of their respective owners and should be treated as such.

Copyright 2020 © Embedded Artists AB RevE

http://www.embeddedartists.com/

Working with Cortex-M4 on iMX7 Dual Page 3

Table of Contents

1 Document Revision HiStOryccccccevvvviiiiiiinnnnnn. 5
2 INtroduCtioN ...ccccvviiiiiiiiiiiiii 6
2.1 MURI-COT@.iiiieiii ettt 6
2.2 Additional DOCUMENTAtIONcciiieiiiciiieiec e 6
2.3 CONVENTIONS ..ottt 6
3 Hardware related..........cccoooiiiiiiiiiiiieeeeeeen 8
3.l Prer@QUISITES it 8
3.2 UART interfaces on COM Carrier board version 1cccoe... 8
3.3 UART interfaces on COM Carrier board version 2c....... 9
3.4 Terminal applicationccccccovviiiiiii 9
4 Download and start an application.................... 10
4.1 Update boot partition with needed filescccceeviiiiiiiicnnn 10
4.2 Change the device tree fil€......ccivuiiiiuiiiiiiiiiiiiiiiiieiviviivieeeiaeeenns 11
4.3 RUNFrOmM TCM..iiiiiiiiiiiii e 11
4.4 RUN from OCRAMcoiiiiiiiiiic e 12
4.5 RuUn from DDR RAM ..o 12
4.6 Automatically start the M4 applicationc.ccceeeiviiiiiiiineennnn 13

5 Remote communication applications (RPMsg) 14

5.1 Ping-pong appliCationcccccoviiiiiiiiiiiiiiiiceee e 14
5.2 TTY @pPPliCAtION ..cciiiiiiiiiiiicce e 14
6 FreeRTOS ... 16
6.1 INSTAIALION e 16
6.1.1 File SIIUCIUIE ..ottt 16
6.2 Build With ARM DS-5. ... 16
6.3 Debug uSING DS-5 ..o 17
6.3.1 Setup the hardwareccccooiiiiiiiiiiiiii e 18
6.3.2 Import OCRAM version of “hello world”.............cccooiiiiniincniinnn, 19
6.3.3 Create a new Debug configurationcccocveeeviiiieniieeennnnen. 19
6.4 Build With ARM GCC......cuiiiiiiiiieiii et 22
6.4.1 INStall ARM GCCcoiiiiiiiiiiie et 22
6.4.2 INStall MINGWoiiiiiiiiicie e 22
6.4.3 INStall CMAKE.........oiiiiiiiiiiie e 25
6.4.4 BUIld APPIICALIONciiiiiiiiiiiiie e 26
6.5 Build with Eclipse and ARM GCCccoceiiiiiiiiiiiiiiiece 26
6.5.1 Install “GNU ARM Eclipse” pluginsccccoeviiiieiiiinieiiieeenin 27
6.5.2 Create ProjeCt: NEW........coccueiiiiiiiieiiiii e 27
6.5.3 Create project: Linked folders..........ccccoiiiiiiiiiiiiiiiieee 28
6.5.4 Create project: Exclude from buildccccceeiiiii, 30

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 4

6.5.5 Create project: “Include” pathscccoiiiiiiiiiiiii 31
6.5.6 Create project: SEtiNGSuueiiiiieeiiiiie e 32
6.5.7 Update linker file and build applicationcccccovvvieiiieeennnnen. 36
6.6 Debug using ECHIPSE ... 36
6.6.1 LPC-Link 2 with J-Link firmwarecccccceviiiiiiiiieiieee e, 36
6.6.2 J-LiNK GDB SEIVENeiiiiiiiieeeieeee e 37
6.6.3 J-Link SCrPt fileS ..ceeiiiieeeee e 37
6.6.4 Connect LPC-Link 2 to the boardccccevviiiiiiiiieiiiice e, 37
6.6.5 Create a debug configurationccoeeiiiieeieiiiiiiiieee e, 38
6.6.6 Start a debug SESSION.......cceiiiiiiiiiiiiee e 40
6.7 Build with IAR Embedded Workbenchcccciiiinnn 41
7 Use DS-MDK for application development 42
7.1 InStallation c.oooooviiiiiie 42
7.2 Package ManN@QETccuuiiiiiiieiiiiieeee et 42
7.3 Debug the M4 Applicationcccveeiiiiiiiiiiicie e 43
7.3.1 Build the appliCationccceeiiiiiiiiiiii e 43
7.3.2 Setup the debug adapter..........cccceviiiiiiiiiiciii e 44
7.3.3 Create a debug configurationcccccoeceveiiiiieeiniiee e 44
7.4 Debug the Linux AppliCation.......ccoociiiiiiiiiiiiee e

7.4.1 Build the application
7.4.2 Setup Remote System Explorer (RSE)

7.4.3 Create Debug Configuration............ccceeviiiiiiiiieciiiiee e 49
7.5 Simultaneous Debuggingccoovieiiiiiiiiiiiie e 51
8 Additional documentation...........cc.eevvvviiiiiinnnnnns 53
8.1 Getting started with Multicore Programming for iMX6 SoloX .. 53
8.2 FTF: i.MX6 SoloX Heterogeneous Multiprocessing................... 53
8.3 Remote Processor Messaging (rpmsg) FrameworKk.................. 53
8.4 i.MX Linux Reference Manual...........cccccooouvviiniiiiiniiiiiniiec e 53
9 Troubleshooting........ccuuuueiiiiiiiiiiiiiiiiiiiie 54
9.1 Allow user “root” to use an SSH connection...............c............. 54
9.2 LPC-Link 2 with CMSIS-DAP Firmware.........cccccouvuvivreeeennnninen. 54
9.2.1 Install the FIrMWArecoiiiiiiiiiie e 54
9.2.2 LPC-Link 2 doesn’t enumerate with CMSIS-DAP Firmware......... 55
9.2.3 Cannot find LPC-Link 2 in DS-MDKcuviiiiiiiiiiiiiiiceeeeee 55

9.3 Linux (A7) terminal/console doesn’t accept input while
debUugQing M4 ... 58

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 5

1 Document Revision History

Revision Date Description
A 2016-06-15 | First release
B 2017-03-02 | - Updated section 6.1 with link to FreeRTOS bundle

- Added section 6.5 describing how to build using Eclipse
- Added section 6.6 describing how to debug using Eclipse
C 2017-04-25 | - Added chapter 7 — Use DS-MDK

- Added chapter 9 — Troubleshooting

D 2017-09-22 | - Minor updates to several sections.
- Added section 9.3
E 2020-11-04 | - Updated instructions with regard to the COM Carrier board V2.

- Major updates to chapter 4
- Added instructions for the RPMsg TTY application, section 5.2

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 6

2 Introduction

This document provides you with step-by-step instructions for how to work with the Cortex-M4
microcontroller on the iMX7 Dual (u)COM boards.

o iMX7 Dual Developer's Kit (EAK00273)

e iMX7 Dual Developer's Kit V2 (EAK00329)

o iMX7 Dual uCOM Developer's Kit (EAK00268)

o iMX7 Dual uCOM Developer's Kit V2 (EAK00344)
e iMX7 Dual COM (EAC00274, EAC00276)

e iMX7 Dual uCOM (EAC00266, EAC00267)

2.1 Multi-Core

The i.MX7 Dual processor is utilizing heterogeneous multiprocessing, that is, using different kinds of
cores. The i.MX7 Dual has two ARM Cortex-A7 cores and one ARM Cortex-M4 core. When developing
an application that will utilize both these cores there are a number of things you need to be aware of.

- Both the A7 cores and the M4 core might have access to peripheral blocks in the processor.
For your application you have to decide which core that is responsible for a peripheral. This
decision can affect, for example, the device tree (dtb) file used by Linux when initializing
device drivers.

o Inthe instructions a specific dtb file will be used that disable some peripherals
conflicting with Cortex-M4.

- Cortex-A7 is always the primary core that is the first to boot and responsible for starting
Cortex-M4. This is done by the u-boot in our examples.

- There are ways to communicate between the cores. Chapter 5 describes how to run an
application that utilizes Multi-Core Communication.

2.2 Additional Documentation
Additional recommended documentation:
o Getting Started with the i.MX7 Dual Developer’s Kit — shows you how to get started with the
hardware.

2.3 Conventions

A number of conventions have been used throughout to help the reader better understand the content
of the document.

Constant width text —is used for file system paths and command, utility and tool names.

$ This field illustrates user input in a terminal running on the
development workstation, i.e., on the workstation where you edit,
configure and build Linux

This field illustrates user input on the target hardware, i.e.,
input given to the terminal attached to the COM Board

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 7

This field is used to illustrate example code or excerpt from a
document.

This field is used to highlight important information

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 8

3 Hardware related

3.1 Prerequisites
To be able to follow all the instructions in this document the following is required.
e One Developer’s Kit; you can use any of the Developer’s Kits mentioned in chapter 2 above.

o Ifusing the Developer’s Kit version 1 (V1) you need two FTDI cables for console output/input
from both the Cortex-A7 and the Cortex-M4. Please note that only one cable is included with
the Developer’s Kit V1. If you are using a Developer’s Kit version 2 (V2) you don’t need any
FTDI cables.

e One Debug interface board with 10-pos FPC cable (included with Developer’s Kit). Only
needed when debugging with ARM DS-5 as described in section 6.3 or with Eclipse as
described in section 6.6

o Keil ULINK-Pro. Only needed when debugging with ARM DS-5 as described in section 6.3

e ARM DS-5 commercial license. Only needed when debugging with ARM DS-5 as described in
section 6.3

e LPC-Link 2. Only needed when debugging using Eclipse as described in section 6.6

3.2 UART interfaces on COM Carrier board version 1

Two consoles are needed when working with both the Cortex-A7 (running Linux) and the Cortex-M4
microcontroller. Connector J35 is used by Cortex-A7 and connector J15 is used by Cortex-M4 as
shown in Figure 1 below.

{ it hbieit ittt eaadnt
(R R R F R R R R R R R PR R R R R R R R R R b R R R R R R R R R RN R R LR

-l - VS

I IV

Cortex-M4

Cortex-A7

IR1AR] I35 %

Figure 1 - COM Carrier Board V1, UART interfaces

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 9

3.3 UART interfaces on COM Carrier board version 2

The COM Carrier board version 2 has a dual channel UART-to-USB bridge, meaning that you will get
two UART interfaces via one USB cable connected between the micro-B USB connector (J16) on the
carrier board and your PC.

There are jumpers on the carrier board that lets you select which UART interface that is connected to
the UART-to-USB bridge, see Figure 2. Jumpers J19/J20 let you select between using UART-A or
UART-C as console for the Cortex-A side. By default, these jumpers select the UART-A interface, that
is, jJumpers are in upper position. This is the position they should have for the iIMX7 Dual.

Jumpers J17/18 lets you select between using UART-B or UART-C as console for the Cortex-M side.
By default, these jumpers are not inserted, but they should be in upper position for the iMX7 Dual.

||

J18, J17, J19, J20
Left to right

J19, J20
Upper position: connect UART-A to Cortex-A console
Lower position: connect UART-C to Cortex-A console

’I

J18, J17
Upper position: connect UART-B to Cortex-M console
Lower position: connect UART-C to Cortex-M console

J16
micro-B USB
connector

5 [N |
g 03 E—H
ool e e ER - ——

Figure 2 - COM Carrier Board V2, UART interface connectors

3.4 Terminal application

You need a terminal application (two instances of it to connect both to the Cortex-A side and the
Cortex-M side). We recommend Tera Term, but you can use the terminal application of your choice.
Connect to the virtual COM ports using 115200 as baud rate, 8 data bits, 1 stop bit, and no parity.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 10

4 Download and start an application

This section describes how to download and start a pre-compiled application.

41 Update boot partition with needed files

The remaining parts of this chapter assumes that the first partition of the eMMC contains the pre-
compile applications. If you have programmed your board using a UUU bundle from 2020-11-04 or
later the files will already have been copied to the eMMC flash. If you have programmed using an older
version and don’t want to update you can follow these instructions.

Note: It is not necessary to have the M4 applications on the eMMC, but for simplicity the
following instructions in this chapter assumes they are.

Download pre-compile applications
Go to http://imx.embeddedartists.com and download the file compiled cortex m4 apps.zip.

Direct link: http://imx.embeddedartists.com/imx7d_ucom/compiled cortex m4 apps imx7d.zip

Copy via USB memory stick

There are several ways to copy these pre-compiled files to the eMMC, but here we will use a USB
memory stick.

1. Unpack the file compiled cortex m4 apps.zip file and copy the unpacked files to
the USB memory stick. This is something you do on your computer.

2. Bootinto Linux and insert the USB memory stick into the USB host port on the carrier board.
You will see output like below in the console when inserting the USB memory stick. The most
important part is the last line that lists the device name (sda1).

[23.104504] usb 1-1.2: new high-speed USB device number 4 using ci_hdrc

[23.165591] usb 1-1.2: New USB device found, idVendor=0781, idProduct=5406,
bcdDevice= 0.10

[23.173972] usb 1-1.2: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[23.194511] usb 1-1.2: Product: U3 Cruzer Micro

[23.199055] usb 1-1.2: Manufacturer: SanDisk Corporation

[23.204371] usb 1-1.2: SerialNumber: 0000185A49619848

[23.225447] usb-storage 1-1.2:1.0: USB Mass Storage device detected

[23.264533] scsi host0: usb-storage 1-1.2:1.0

[24.315418] scsi 0:0:0:0: Direct-Access SanDisk U3 Cruzer Micro 2.18 PQ:
0 ANSI: 2

[24.334542] scsi 0:0:0:1: CD-ROM SanDisk U3 Cruzer Micro 2.18 PQ:
0 ANSI: 2

[24.345768] sd 0:0:0:0: [sda] 8015505 512-byte logical blocks: (4.10 GB/3.82
GiB)

[24.364543] sd 0:0:0:0: [sda] Write Protect is off

[24.373248] sd 0:0:0:0: [sda] No Caching mode page found

[24.378630] sd 0:0:0:0: [sda] Assuming drive cache: write through

[24.443649] sda: sdal

3. Mount the USB memory stick and eMMC partition. The USB memory stick has in this
example the device name sda1 as can be seen in the output in step 2 above. The partition
on the eMMC that we will use is available at /dev/mmcblk2p1l.

i# mkdir /mnt/usb
. # mount /dev/sdal /mnt/usb

Copyright 2020 © Embedded Artists AB RevE

http://imx.embeddedartists.com/
http://imx.embeddedartists.com/imx7d_ucom/compiled_cortex_m4_apps_imx7d.zip

Working with Cortex-M4 on iMX7 Dual Page 11

mkdir /mnt/mmcboot
mount /dev/mmcblk2pl /mnt/mmcboot

4. Copy the bin file(s) from the USB memory stick to the boot partition. In this example we are
only copyingm4 hello tcm.bin.

cp /mnt/usb/m4 hello tcm.bin /mnt/mmcboot/

5. Unmount the devices

umount /mnt/usb
umount /mnt/mmcboot

4.2 Change the device tree file
Some of the u-boot environment variables need to be updated.
1. You must have booted into the U-boot console.

2. Change the device tree file (dtb) to use by Linux. The example below sets the file to use for
the iMX7 Dual uCOM Developer’s Kit V2. If you are using a different board just use the same
name as set by defaultin the £dt_£i1le variable and append ‘-m4’.

=> setenv fdt file imx7dea-ucom-kit v2-m4.dtb
=> saveenv

4.3 Runfrom TCM

Make sure you have built an application for TCM or selected a pre-built application for TCM (name
ends with tcm). The application file must have been copied to eMMC as described in section 4.1

1. You must have booted into the U-boot console.
2. Setthe M4 file name in the m4 image variable.

=> setenv md4image m4 hello tcm.bin

3. Set the address where the application will run from (TCM memory in this case).

=> setenv m4runaddr 0x7£8000

4. Update the m4aboot variable so it loads the image from eMMC to DDR memory, copies from
DDR memory to TCM memory and then boots the application.

=> setenv mdboot 'run loadm4image; cp.b ${loadaddr} ${mi4runaddr}
S{filesize}; bootaux ${mdrunaddr}'

5. Save the changes.

=> saveenv

6. Boot the M4 application.

=> run mi4boot

Copyright 2020 © Embedded Artists AB RevE

Copyright 2020 © Embedded Artists AB

Working with Cortex-M4 on iMX7 Dual Page 12

4.4 Runfrom OCRAM

Make sure you have built an application for OCRAM or selected a pre-built application for OCRAM

(name ends with ocram). The application file must have been copied to eMMC as described in section
4.1 above.

1. You must have booted into the U-boot console.

2. Set the M4 file name in the m4 image variable.

=> setenv md4image m4 hello ocram.bin

3. Set the address where the application will run from (OCRAM memory in this case).

=> setenv md4runaddr 0x910000

4. Update the m4aboot variable so it loads the image from eMMC to DDR memory, copies from
DDR memory to OCRAM memory and then boots the application.

=> setenv md4boot 'run loadm4image; cp.b ${loadaddr} ${mé4runaddr}
S{filesize}; bootaux ${mdrunaddr}'’

5. Save the changes.

=> saveenv

6. Boot the M4 application.

=> run mdboot

4.5 Runfrom DDR RAM

Make sure you have built an application for DDR RAM or selected a pre-built application for DDR RAM

(name ends with ddr). The application file must have been copied to eMMC as described in section 4.1
above.

1. You must have booted into the U-boot console.

2. Set the M4 file name in the m4 image variable.

=> setenv m4image m4 hello ddr.bin

3. Set the address where the application will run from (DDR memory in this case).

=> setenv mdrunaddr 0x9££00000

4. The default 10adm4image variable will load to the address set in 1oadaddr variable. We
don’t want to set 10adaddr to the same address as used by the M4 application since
loadaddr will also be used when loading the kernel. Instead we create a new

loadm4image ddr variable that will load the application directly to the address where it
will be started.

RevE

Working with Cortex-M4 on iMX7 Dual Page 13

=> setenv loadmé4image ddr 'fatload mmc ${mmcdev}:${mmcpart}
${mi4runaddr} ${mdimage}'

5. Update the maboot variable so it loads the image from eMMC to DDR memory and then
boots the application.

=> setenv md4boot 'run loadm4image ddr; bootaux ${m4runaddr}’

6. Save the changes.

=> saveenv

7. Boot the M4 application.

=> run mi4boot

4.6 Automatically start the M4 application
If you want the M4 application to start during boot of the board follow the instructions below.

1. You must have booted into the U-boot console.

2. You should also have followed the instructions in any of the sections above depending on
which type of application you use.

3. Change the bootcmd variable to first run m4boot and then boot Linux.

=> setenv bootcmd "run mdboot; ${bootcmd}"
=> saveenv

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 14

5 Remote communication applications (RPMsg)

5.1 Ping-pong application

The RPMsg ping-pong application is an example of communication between the Cortex-A7 core and
the Cortex-M4 core using the RPMsg API.

1. Makesurethem4 rpmsg ping tcm.bin file is available on eMMC as described in
section 4.1 above.

2. Follow the instruction in section 4.3 for how to run an application from TCM memory, but use
the file name m4_rpmsg_ping_tem.bininstead of m4 hello tcm.bin.

3. In the u-boot console add the boot argument uart from osctoextra bootargsto
make Cortex-A7 and Cortex-M4 UART clocks match.

=> setenv extra bootargs uart from osc
=> saveenv

4. Boot the M4 application

=> run méboot

5. In the console for the Cortex-M4 you will now see the output below

RPMSG PingPong FreeRTOS RTOS API Demo...
RPMSG Init as Remote

6. In the console for Cortex-A7 boot into Linux

=> boot

7. When Linux has booted you need to load the rpmsg pingpong module.

modprobe imx rpmsg pingpong

8. You will now see messages in both consoles / terminals.

5.2 TTY application

The RPMsg TTY application is an example of communication between the Cortex-A7 core and the
Cortex-M4 core using the RPMsg API. A TTY channel will be setup making it possible to send
messages from the Cortex-A7 core to the Cortex-M4 core from Linux user-space.

1. Make surethem4 rpmsg echo tcm.bin file is available on eMMC as described in
section 4.1 above.

2. Follow the instruction in section 4.3 for how to run an application from TCM memory, but use
the file name m4_rpmsg_echo_tcm.bininstead of m4 hello tcm.bin.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 15

3. Inthe u-boot console add the boot argument uart from osctoextra bootargs to
make Cortex-A7 and Cortex-M4 UART clocks match.

=> setenv extra bootargs uart from osc
=> saveenv

4. Boot the M4 application

=> run mi4boot

5. In the console for the Cortex-M4 you will now see the output below

RPMSG String Echo FreeRTOS RTOS API Demo.. .
RPMSG Init as Remote

6. In the console for Cortex-A7 boot into Linux

=> boot

7. When Linux has booted you need to load the rpmsg tty module. You will see a confirmation
that a channel has been created (similar as below).

modprobe imx rpmsg tty

[23.739119] imx rpmsg tty virtioO.rpmsg-openamp-demo-channel.-1.0: new channel:
0x400 -> 0x0!

[23.757228] Install rpmsg tty driver!

8. In the console for the Cortex-M4 you will see output similar to below when the module is
loaded.

Name service handshake is done, M4 has setup a rpmsg channel [0
-——> 1024]

9. From Linux you can now send a message to the Cortex-M4 side by using the new TTY
channel (dev/ttyRPMSGO)

echo hello > /dev/ttyRPMSGO

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 16

6 FreeRTOS

NXP has developed a number of sample applications and peripheral drivers for the Cortex-M4 bundled
together with the real-time operating system FreeRTOS.
6.1 Installation

The bundle can be downloaded from NXP’s website. When writing these instructions the version of the
bundle was v1.0.1. Follow the link below to download the bundle.

https://www.nxp.com/webapp/Download?colCode=FreeRTOS iMX7D 1.0.1 WIN

NOTE: You need to register an account at nxp.com in order to get access to the FreeRTOS
installation package.

6.1.1 File Structure
When FreeRTOS has been installed you will have a file structure as shown in Figure 1.

4 || FreeRTOS_BSP 1.01_iMXTD

, doc
> 1 examples
») middleware
>\ platform
> e rtos
> j tools

Figure 1 - FreeRTOS file structure

6.2 Build with ARM DS-5

This section describes how to setup ARM DS-5 to build the sample applications. The instructions are
originally from the document found at the location below (<FreerTOS> is the path to where the
FreeRTOS bundle was installed).

<FreeRTOS>\doc\
Getting Started with FreeRTOS BSP for i.MX 7Dual.pdf.

NOTE: You need a commercial license in order to run ARM DS-5 and you must also have
installed ARM DS-5 before following the instructions.

1. Start ARM DS-5
2. Import an application

a. Goto File = Import > General - “Existing Projects into Workspace” and click the
“Next” button as shown in Figure 2.

Copyright 2020 © Embedded Artists AB RevE

https://www.nxp.com/webapp/Download?colCode=FreeRTOS_iMX7D_1.0.1_WIN

Working with Cortex-M4 on iMX7 Dual Page 17

& Import Elﬂlg
Select \J
Create new projects from an archive file or directory. | E 5 I

Select an import source:

type filter text

I 4 (= General
B Archive File i
> Existing Projects into Workspace
[File System
[T Preferences

s O/C++

> = CVS

s = Install

> [Remote Systemns

> = Run/Debug

» = Scatter File Editor

» = Target Configuration Editor

» = Team

@ < Back Next » Finish

Figure 2 - Import Existing Projects

b. Browse to the DS-5 project files for the application to import. In this example it is the

OCRAM version of “hello world” found at:
<FreeRTOS>\examples\imx7d sdb m4\demo apps\hello world o
cram\ds5

3. Choose build target by clicking on the arrow to the right of the “hammer” in to toolbar, see
Figure 3. When the target has been selected the project will be built. If target has previously
been selected it is enough to click on the “hammer” icon.

R iEE
v 1debug

‘ 2 release

DTV

Figure 3 - Build targets

4. The built application is now available at the location below. There will be both an axf file and a
bin file. It is the bin file that should be loaded to the iMX6 COM SoloX Board as described in
chapter 4

<FreeRTOS>\examples\imx7d sdb m4\demo apps\hello world ocram\d
s5\debug

6.3 Debug using DS-5

With ARM DS-5, a Keil ULINK Pro, and a debug interface board it is possible to download and debug
an application on the Cortex-M4.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 18

6.3.1 Setup the hardware

Figure 4 and Figure 5 show how the ULINK Pro and debug interface board is connected to the iMX7
Dual uCOM Board.

Figure 4 - Debug interface board connected to COM board

Figure 5 - ULINK Pro and debug interface board

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 19

6.3.2 Import OCRAM version of “hello world”

The application is downloaded and debugged from internal RAM, i.e., OCRAM. Follow the steps in
section 6.2 to import the hello world application.

6.3.3 Create a new Debug configuration
To be able to download and debug a “Debug configuration” must be created.

1. Go to Run > Debug Configurations and select DS-5 Debugger as shown in Figure 6.
S bebus oo S —

Create, manage, and run configurations

Create, edit or choose a configuration te launch a D5-5 debugging session,

O | = :=:=> h Configure launch settings from this dialog:

type filter text |] - Press the 'New' button to create a configuration of the selected type.

[E] C/C++ Application

[E] C/C++ Attach to Applic
[E] C/C++ Postmortem Det
| [E] C/C++ Remote Applical

£5 DS5-5 Debugger)) -]) .
@ IronPython Run - Edit or view an existing configuration by selecting it.

- Press the 'Duplicate’ button to copy the selected configuration.

- Press the 'Delete’ button to remove the selected configuration.

ko i

- Press the 'Filter' butten te configure filtering options.

&’ IronPython unittest
Java Applet Configure launch perspective settings from the ‘Perspectives’ preference page.

Figure 6 - Debug Configurations

2. Right click on DS-5 Debugger and select “New”.

3. Give the configuration a name such as iMX7 Cortex-M4 and then select the “Connection” tab
as shown in Figure 7.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 20

r
2 Debug Configurations

— — p— p—
Create, ge, and run ig
= ;
CRX B~ Mame: | iMXT Cortex-Md]
type filter text T Files | % Debugger| 2 05 Awareness| 6+ Arguments| T Environment |
C/C++ Application
= PP Select target

C/C++ Attach to Application

— Select the manufacturer, board, project type and debug operation to use, Currently selected:
C/C++ Postmortem Deb

JC: R:m';'t”e ;p"'ph;n”oige' MXP / i.MX7 SDE / Bare Metal Debug / Cartex-M4

4 75 DS-5 Debugger

. Filter platforms
#5 Mew_configuration

: A" IronPython Run > 1.MXB SoloX Sabre SDB oy
H @ TranPython unittest > i.MXG UltraLite (Generic)
fl Java Applet 4 i.MX7 SDB
fl [T Java Application . Bare Metal Debug
i Ju JUnit Cortex-A7
| a7 Jythen run Cortex-M4
(| a’ Jython unittest > Linux Kernel and/or Device Driver Debug |j
fl = Launch Group » Kinetis L Series (Generic)
A PyDev Django » LPC3131 (Generic)
\ 23 PyDev Google App Run . LPC3141 (Generic)
& Python Run > LPC3152 (Generic) <
& Pythan unittest
[Z, Remote Java Application Target Connection
DTSL Options Configure ULINKpro trace or other target options. Using "default” configuration options

DS-5 Debugger will connect to a ULINKpre to debug a bare metal application.

Connections.

Bare Metal Debug | Connection P1018103:Keil ULINKpro

P
Filter matched 19 of 19 items eve
@

Figure 7 - Setup Debug Connection
4. In the “Connection” tab go to NXP - i.MX7 SDB - Bare Metal debug and choose “Debug
Cortex-M4” as shown in Figure 7.
5. Stillin the “Connection” tab select ULINKpro in the “Target Connection” list and then click the
“Browse” button in the Connections section. Select the ULINKpro connection.

Please note that the ULINK pro debug adapter must be connected to your computer before
clicking the “Browse” button

6. Click on the “Files” tab and then the “Workspace” button. Select the ax £ file in the “debug”
folder as shown in Figure 8.

F B
S Open ERE==c=

Select a file:

a 5 hello_world_ocram_imx/ d_sdb_md -
.cproject
Jproject i
s> [settings
[» = board
4 [debug
| » = board
s = driver
s = freertos
[l hello_world_ocram_imx? d_sdb_md.axf
; hello_world_ocram_imx? d_sdb_md.bin
» = source

m

Figure 8 - Application to download

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual

7. Go to the “Debugger” tab and select “Debug from entry point” as shown Figure 9.

-
2 Debug Configurations

— pr— —

Create, manage, and run configurations

Create, edit or choose a configuration to launch a D5-5 debugging session.

CEX B>~ Mame: iMX7 Cortex-M4

type filter text =<i== Connection Files | Debugger oS Awarenesq = Arguments} . -} Environmenq

[€] C/C++ Application
[€] C/C++ Attach to Application

R trol
[€] C/C++ Postmortem Debugger _un contrer B
i [£] C/C++ Remote Application () Connect only (7) Debug from symbel | main
||| &5 DS-5Debugger [] Run target initialization debugger script (.ds / .py)

Fr iMXT Cortex-h4
@ IronPython Run
& TronPython unittest [Run debug initialization debugger script (.ds / .py)
I) Java Applet
[T Java Application
Ju JUnit [Execute debugger commands
a7 Iython run
& lython unittest
@ Launch Group
Il m PyDev Django
23 PyDev Google App Run
eF Python Run
éj Python unittest

E Remote Java Application psorkoduscion

[¥] Use default

Figure 9 - Debug from entry point

8. Go to the “OS Awareness” tab and choose FreeRTOS in the list as shown in Figure 10.

-
£ Debug Configurations

Create, manage, and run configurations
Create, edit or choose a configuration to launch a DS-5 debugging sessicn.
P —+,
EEER .1 | H &~ Mame: iMXT Cortex-M4
type filter text -it= Connection r Files (344‘ Debugger ﬁ" 0S Awareness (= Argumentq m Environmenq

[] C/C++ Application
[c] C/C++ Attach to Application
[©] C/C++ Postmortem Debugger

- e ——"

Il [€] C/C++ Remote Application @

||| < &5 D5-5Debugger E’ﬁ F@g
%

5 IMXT Cortex-M4
@' IronPython Run
& IronPython unittest
I G| Java Applet FreeRTOS™ is a ma.rket leading real-time pperating system (RTOS) suitable for highly-cq-nstrained memt
Development Studic 5 (D5-5™) can benefit from the in-built task aware debug and detailed system infor

[T Java Application

i Ju JUnit When building your FreeRTOS image, ensure that the following compiler flags are set:
Il @7 Jython run -DportREMOVE_STATIC_QUALIFIER
\ a Jython unittest -DINCLUDE xTaskGetldleTaskHandle

= Launch Group -DeonfigQUEUE_REGISTRY _SIZE=n (wheren >=1)

\ ﬂ PyDev Django
23 PyDev Google App Run
eF Pythaen Run

If these flags are set incorrectly, FreeRTOS support might fail te activate in DS-5 Debugger. See the docu
to view the details of these flags.

é’ Python unittest For maore information on FreeRTOS™ and D5-5 toelchain:
E’ Remote Java Application http://ds.arm.com/partners/real-time-engineers

Figure 10 - OS Awareness

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 22

9. Click the “Apply” button and then the “Debug” button to initiate a debug session. When the
application has been downloaded to the target it could look like Figure 11.

- -
& DS-5 Debug - hello_world_ddr_imx7d_sdb_md/startup,/startup_MCIMX7D_M4.s - Eclipse Platform

File Edit Mavigate Search Project Run Window Help

A ENREEC RS D BU RS S e el
&% Debug Co.. 32 [ProjectEx.. y§RemoteSy.. = O [Commands 52 Jl Histo 3 Scripts EEBREE~% =08 ®Var. 3
DRkl DR R &, Linked: iMXT Cortex-M4 =
- In startup MCIMXTD M4.s -
Bx282183A4 215,8 CPSID I 3 Mask interrupts
4 & iMX7 Cortex-M4 connected break -p "C:\Freescale\FreeRTO5 BSP_1.@.1 iMx7D\platform\utilities’ Name
& Cortex-M4 21 stopped Breakpoint 2 at 8x28218(0E = Locals
on file debug_consele_imx.c, line 378 (= File Static Va
condition 2 = Globals

break-script 2 "
ignore 2 @
break-stop-on-cores 2
unsilence 2

Breakpoint 2 unsilenced

< .] » 4|
Status: connected 05 Support: Waiting for symbols to be lo... Command: Press (Ctrl+Space) for Content Assist Add Variable

[8) startup_MCIMX7D_Md.s E7 debug_console_imx.c pingpong_freertos.c = 0 10 Dis.. 22
285 m
286 AREA | .text|, CODE, READONLY
207
208 ; Reset Handler @ :D - <Next
2089
212 Reset_Handler PROC Address
211 EXPORT Reset_Handler [WEAK] 8x20218340
212 IMPORT SystemInit Bx202183A2
213 IMPORT _ main
214 - % | ex20218384

215 CPSID I 3 Mask interrupts @x202183A6
216 LDR RE, =SystemInit Bx282183A8
217 BLX R il Bx202183AA
218 CPSIE i ; Unmask interrupts ‘E| Bx282183AC
219 LDR RE, =_ main — Bx282183AE
220 BX L]
221 ENDP ax28218380
222
223 <

Figure 11 - Active debug session

NOTE 1: If you are not able to start the debug session please make sure that you have only
booted into u-boot on the Cortex-A7 and not into Linux when you start the debug session.

NOTE 2: If the terminal/console attached to the A9-core (Linux) seem to be unresponsive,
that is, it doesn’t accept any input please read section 9.3

6.4 Build with ARM GCC

6.4.1 Install ARM GCC

Download and install GCC ARM Embedded. The file gcc-arm-none-eabi-4 8-2014gl-
20140314-win32.exe was used when writing these instructions.

https://launchpad.net/qcc-arm-embedded/+download

6.4.2 Install MinGW

MinGW - native Windows port of the GNU Compiler Collection (GCC) is also needed to build the
applications on a Windows machine.

1. Go to the link below and click the “Download” button
http://sourceforge.net/projects/mingw/

2. Start the downloaded installation file and click the Install button and then click the “Continue”
button on the dialog windows that will appear.

Copyright 2020 © Embedded Artists AB RevE

https://launchpad.net/gcc-arm-embedded/+download
http://sourceforge.net/projects/mingw/

Working with Cortex-M4 on iMX7 Dual Page 23

& n|

MinGW Installation Manager Setup Tool

mingw-get version 0.6.2-beta-20131004-1
Written by Keith Marshall

Copyright @ 2009-2013, MinGW.org Project
http://mingw.org

This is free software; see the product documentation or source code, for copying and
redistribution conditions. There is NO WARRANTY; not even an implied WARRANTY OF
MERCHANTABILITY, nor of FITNESS FOR ANY PARTICULAR PURPOSE.

This tool will guide you through the first time setup of the MinGW Installation Manager
software (mingw-get) on your computer; additionally, it will offer you the opportunity to
install some other common components of the MinGW software distribution.

After first time setup has been completed, you should invoke the MinGW Installation
Manager directly, (either the CLI mingw-get.exe variant, or its GUI counterpart,
according to yvour preference), when you wish to add or to remove components, or to
upgrade your MinGW software installation.

View Licence] [Install | ’ Cancel

Figure 12 - MinGW Installation

3. When the installation manager window appears, as shown in Figure 13, choose mingw32-
base and msys-base in the “Basic Setup” section.

-
B MinGW Installation Manager

Installation Package Settings

Basic Setup Package Class Installed version Repository Version Description

All Packages . . . -
[mingw-developer-taolkit bin 2013072300 An MSYS Installation for M
mingw32-base bin 2013072200 A Basic MinGW Installation
D mingw32-gcc-ada bin 4.8.1-4 The GNU Ada Compiler
[mingw32-gce-fortran bin 4.8.1-4 The GNU FORTRAN Compil
] mingw32-gcc-g++ bin 4.8.1-4 The GNU C++ Compiler
D mingw32-gcc-objc bin 4.8.1-4 The GNU Objective-C Com
msys-base bin 2013072300 A Basic MSYS Installation |

4| 1

| Generall Description Dependenciesl Installed Files I Versions

No package selected.

Flease =elect a package from the list abowve, to view related data.

Figure 13 - MinGW Installation Manager

4. Click Installation >Apply Changes for the packages to be installed.

5. When the installation has finished add ¢ : \MinGw\bin (if this is where you installed
MinGW) to the PATH variable. There are several ways to add something to the PATH
variable.

a. Inacommand prompt write set PATH=%PATHS;C:\MinGW\bin

b. To permanently add MinGW to PATH open System properties by (this applies for
Windows 7) right clicking on Computer in an Explorer window and then select
Properties. Click “Change settings” and then the Advanced tab as shown in Figure
14. Click on the “Environment Variables” button and edit the PATH variable as
shown in Figure 15.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 24

,

Computer Name I Hardware | Advanced |System Protection | F{Emotel

‘Y'ou must be logged on as an Administrator to make maost of these changes.

Performance

Visual effects, processor scheduling, memony usage, and virtual memory

Settings...

User Profiles
Deshtop settings related to your logon

Startup and Recovery
System startup, system failure, and debugaing information

Settings...

[Environment Variables...]

0K || Ccancel Apply

Figure 14 - System Properties in Windows

r ki
Environment Variables ﬁ

User variables for andre

Variable Value

MOZ_PLUGIM_P... C:\Program Files (x86)\Foxit Software!...

i »

C:\Jsers\andre\AppData\Roamingnpm. ..

TEMP %USERPROFILE%\AppData \Lacal {Temp
™P %LUSERPROFILE%\AppData\Local Temp ™
New.. || Edit.. |[Delete |

System variables

Variable Value i
ComSpec C:\Windows'system32\cmd.exe e
ESET_OPTIONS

FP_MNO_HOST_C... NO

MQ¥X_PATH C:'\Freescale'\Freescale_MQX_4_1_IMX... 7

e) (e] (o

[ok || cance |

e ——————————— 4

Figure 15 - Environment Variables in Windows

6. Create the ARMGCC DIR environment variable

a. Click the “New” button below “System variables” as seen in Figure 15.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 25

b. Add ArMGCC DIR as variable name and specify the path to ARM GCC as value.
The default installation path of ARM GCC which has been installed when following
these instructions is:

C:\Program Files (x86)\GNU Tools ARM Embedded\4.8 2014qgl

7
Environment Variables |

New System Variable

Variable name: ARMGCC_DIR

Variable value: 86)\GNU Tools ARM Embedded'4.8 2014g1

ok [concel]

System variables

Variable Value =
ComSpec C:\Windows\system32\cmd.exe L4
ESET_OPTIONS

FP_NO_HOST_C... NO

MQX_PATH C:\Freescale\Freescale_MQX_4_1_IMX... ~

| mew.. || Edt. || Delete |

ook [concel |

Figure 16 - ARMGCC_DIR variable

7. Click Ok and then Ok again.

6.4.3 Install CMake

Download and install CMake from the link below. Make sure to add CMake to the system path as
shown in Figure 17.

http://www.cmake.org/cmake/resources/software.html

Copyright 2020 © Embedded Artists AB RevE

http://www.cmake.org/cmake/resources/software.html

Working with Cortex-M4 on iMX7 Dual Page 26

.
A CMake 3.4.1 Setup I e

Install Options
Choose options for installing CMake 3.4.1

By default CMake does not add its directory to the system PATH.

() Do not add CMake to the system PATH

(@) iAdd CMake to the system PATH for all usersi |
() Add CMake to the system PATH for current user |
[] create cMake Desktop Icon

Mullsoft Install Syskem w2, 46

< Back][Mext = J [Cancel

Figure 17 - CMake Install Options

6.4.4 Build Application

1. Open a GCC Command prompt. When ARM GCC was installed a shortcut was created in the
start menu as shown in Figure 18.
. GNU Tools ARM Embedded 4.8 2014q1
, Documentation
___§CC Command Prompt

\g Uninstall GNU Tools for ARM Embeci’

Figure 18 - GCC Command Prompt shortcut

2. Change directory to the application that should be built. In this example the he11o world
application is built.

cd <FreeRTOS>\examples\imx7d sdb mé4\demo apps\hello world\armgcc

3. Runbuild debug.bat to build the application

4. The output of the build will be both an elf file and a bin file located in the sub-directory
debug. Use the instructions in chapter 4 to download the application to the iMX6 SoloX

COM board.
6.5 Build with Eclipse and ARM GCC

How to install and use ARM GCC from the command line is described in section 6.4 above. Most often
you however need to use a development environment (editor) when developing an application. This
section will describe how you can setup Eclipse to use ARM GCC when developing the application.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 27

NOTE: You must have followed the instructions in section 6.4 before continuing with the
instructions in this section.

Itis assumed that you have installed Eclipse with the CDT (C/C++ Development Tooling) plugin.
Eclipse version 4.4.2 (Luna) and CDT 8.6.0 where used when writing these instructions.

6.5.1 Install “GNU ARM Eclipse” plugins

We will utilize CDT extensions called “GNU Arm Eclipse”. Follow the instructions on the link below to
install these extensions/plugins.

http://gnuarmeclipse.github.io/plugins/install/

6.5.2 Create project: New

Start by creating a new “C Project”. Go to File > New Project and then select “C Project” under the
“C/IC++” group as shown in Figure 19.

& New Project O X

Select a wizard p—>

Create a new C project

Wizards:
type filter text

= General
v (= GG+
[C Project
@ C++ Project
[&4 Makefile Project with Existing Code
= CVs

P -

Figure 19 - Select project wizard

Click “Next”, select “Empty Project’, “Cross ARM GCC” as toolchain and give the project a name as
shown in Figure 20.

C Project p—>
Create C project of selected type

Project name: | md_hell o_worldl

Use default location

Location: | E\Develop\iMX\debugging\test?m4_hello_world Browse...
Project type: Toolchains:
Executable Cross ARM GCC

@ Empty Project MinGW GCC
@ Hello World ANSI C Project

@ Hello World ARM C Project

® ADuCM36x C/C++ Project

@ Hello World ARM Cortex-M C/C++ Project
@ Freescale Kinetis Koo C/C++ Project

& Freescale Processor Expert C/C++ Project
@ STM32F0hor C/C++ Project

Figure 20 - Project type and toolchain

Click “Next” and then “Next” again. The toolchain and path should be selected. If “GNU Tools” hasn’t
been selected by default change to this as shown in Figure 21.

Copyright 2020 © Embedded Artists AB RevE

http://gnuarmeclipse.github.io/plugins/install/

Working with Cortex-M4 on iMX7 Dual Page 28

& C Project O s

Cross GNU ARM Toolchain —

Select the toolchain and configure path

Toolchain name: | GNU Tools for ARM Embedded Processors (arm-none-eabi-gec) v|

Toolchain path: | C:/Program Files (x86)/GNU Tools ARM Embedded/4.8 2014q1/bin | Browse...

Figure 21 - GNU ARM Toolchain

6.5.3 Create project: Linked folders

Section 6.1.1 shows the file structure of the installed FreeRTOS bundle for iMX7. The source code that
we need to build is located in several different folders and we need to add these to the Eclipse project.
There are several ways to do this, but in this example we will use “linked folders” and keep the
structure created when installing the bundle.

Begin by adding a linked folder to the demo application. In this example we will be using the
“hello_world” demo. Click on the “Add Folder” icon in the toolbar as shown in Figure 22. Then select
“Folder”. An alternative way is to do this from the menu: File > New - Folder.

& C/C++ - Eclipse

File Edit Source Refactor MNavigate Search Ppaject Run Window Help
ﬁvl—i}v _|®v%v@@vﬁv@v#v07%v
a5

% Source Folder

] I . - -

[Folder

[Project Explorer &3 l = 0
B&|e ~

% m4_hello_waorld

Figure 22 - Add folder

In the dialog window click on the “Advanced” button and then to “Link to alternate location” and browse
to the <FreeRTOS path>/examples/imx7d sdb m4/demo_apps/hello world folder.
This is shown in Figure 23.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 29

& Mew Folder O =

Folder —

Create a new folder resource. B

Enter or select the parent folder:

| md_hello_world |

B P =
5 5 md_helle_world

Folder name: | hello_world

<< Advanced

() (= Use default location

O (-7 Folder is not located in the file system (Virtual Folder)
(O] [Link to alternate location (Linked Folder)

| mx7d_sdb_md\dermo_apps\hello_world | Browse... Variables...

Resource Filters...

® coc

Figure 23 - Linked folder

Repeat the above steps for the following folders:
e <FreeRTOS path>/examples/imx7d sdb m4
o This folder contains board specific code
® <FreeRTOS path>/platform
o Contains initialization and driver code for the iIMX7 processor
® <FreeRTOS path>/rtos/FreeRTOS
o The FreeRTOS code

When all folders have been added to the project it will look like in Figure 24.

o C/C++ - Eclipse
File Edit Source Refactc

M-~ &1

[Project Explorer 2

v =5 md_hello_waorld

> [l Includes
(g FreeRTOS
[y hello_world
[y imx7d_sdb_m4
(g platform

>
>
>
>

Figure 24 - File structure in Eclipse

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 30

6.5.4 Create project: Exclude from build

Some of the sub-folders added to project as described in section 6.5.3 shouldn’t be part of the build.
These can be excluded by right-clicking on the folder and then selecting “Resource Configurations” >
“Exclude from Build”. This is shown in Figure 25

& C/C++ - Eclipse

File Edit Source Refactor Mavigate Search Project Run Window Help

-~ S ®-[-BE - f-E-H-0-%r ®E -6
IR 7 &
@mmaMMax] = 8

B&|e ¥

W 65_‘5 md_hello_world
(7@ FreeRTOS
(7% hello_world_ocram
~ [imaTd_sdb_md

= demo_ap=-
(2= driver_exi New *
[€] board.c Go Into
[K] board.h .)
[clock fre Open in New Window
[B] clock_fre 2 Copy ChrlsC
@ gpfo_pfne Paste Ctrl+V
[n| gpio_pin:
[pin_mux. K Delete Delete
[B] pin_mux. Remove from Context Ctrl+Alt+Shift+ Down
[’z middleware Source 3
(% platform Move...
i N 55| Properties|
fua Import..
[Export.. Resource Path
&] Refresh 5 arh rn4_hello_wor...
Index b
Make Targets >
Resource Configurations » Exclude from Build...
Validate Reset to Default...
Compare With > [

Figure 25 - Exclude folder from build

We must also specify which configurations to exclude the folders from. In our case we select both
‘Debug” and “Release” as shown in Figure 26.

& Exclude from build O X

Exclude object(s) from build in the following configurations

Figure 26 - Configurations to exclude from

Exclude all of the following files and folders:
e imx7d sdb m4/demo_apps

o The demo_apps folder contains several applications. We only want to build
hello_world.

e imx7d sdb m4/driver examples

o The driver_examples folder contains several applications. We only want to build
hello_world.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 31

® FreeRTOS/Source/portable/IAR
o This folder contains code specific for the IAR compiler
® TFreeRTOS/Source/portable/RVDS
o This folder contains code specific for the RVDS compiler

® FreeRTOS/Source/portable/MemMang/heap 2.c (also heap 3.c and
heap 4.c)

o The MemMang folder contains several implementations of memory allocation
routines. We can only use one and will keep the one implemented in heap_1.c.
Exclude all other files.

e platform/CMSIS/DSP Lib

6.5.5 Create project: “Include” paths

Header files are located at several different locations in this project structure. These header files must
be found during a build. This can be done by right-clicking on the project and then select “Properties”.

Go to “C/C++ General’ - “Paths and Symbols”. Select “GNU C” as language and then click the “Add”
button as shown in Figure 27.

& Properties for md_hello_world O *
type filter text Paths and Symbols - A
Resource
Builders
C/C++ Build Configuration: |Debug [Active] ~| | Manage Configurations...
w CfC++ General
Code Analysis
Documentation (= Includes # Symbols =\ Libraries (B Library Paths (2 Source Location] References
File Types
Formatter Languages Include directories
Indexer Assembly T
Language Mappings GNU C e
Paths and Symbaols Tt
Preprocessor Include Pz
Project References Export
Run/Debug Settings
Task Repository
Task Tags Move Up
Validation Mowve Down
WikiTest (1) "Preprocessor Include Paths, Macros etc.” property page may define additional entries
Show built-in values
&% Import Settings... | | S Export Settings...
a 5 Restore Defaults Apply

Figure 27 - Include paths

We are going to add the paths as relative to the workspace so click in the “Workspace” button and then
browse to the folder to include. In Figure 28 it is shown how the “include” folder for FreeRTOS is
selected.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 32

&= GeC Indlexer £ Folder selection O X
v (= MemMa Language Mappings
@ heap Paths and Symbols Select a folder from workspace:
[head Prenrocessorlnclude Pz | [
B Add directory path % v 5 md_hello_world ~
(= .settings
Directory: v = FreeRTOS
| | (== License
v [Source

[[]Add to all configurations iakle Il = include L

[JAdd to all languages = portable i
[= Is aworkspace path HIEREER) [croutine.c

File system... [[¢] event groups.c
[list.c
oK Cancel H [£] queue.c B
=T 1 7 readme.bet E
readme.tet [tasks.c :
& hello_world_ocram ® [timers.c 5
& imx7d_sdb_m4 - B readme.txt B
[€] board.c (== hello_world_ocram v| [
[h] board.h
[€ clock_freq.c
[h clock_freq.h
& s @ ==

@ gpio_pins.h

Figure 28 - Workspace folder

Add the following folders as include paths:
e FreeRTOS/Source/include
e FreeRTOS/Source/portable/GCC/ARM CM4F
e hello world
¢ 1imx7d sdb m4
e platform/CMSIS/Include
e platform/devices
e platform/devices/MCIMX7D/include
e platform/devices/MCIMX7D/startup
e platform/devices/drivers/inc
e platform/devices/utilities/inc

6.5.6 Create project: Settings

There are a number of project settings that must be updated. Right click on the project and then select
Properties.

By default “make” is used to build the application, but since we have installed mingw make we need to
do an update to the toolchain setting. Go to “C/C++ build” = Settings and click on the “Toolchains” tab
as shown in Figure 29. Change the value of the “Build command” field from “make” to “mingw32-
make”.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual

nesue
Builders
v C/C++ Build
Build Variables
Environment

Configuration: |Debug [Active]

Logging i Tool Settings & Toolchains Bl Devices # Build Steps Build Artifact B
Settings
Tool Chain Editor Name: | GMNU Tools for ARM Embedded Processors (arm-none-eabi-gec)
Tools Paths .
C/Crr General Architecture: ARM (Ahrch32) b
Project References Prefic:
Task Repository
Task Tags C compiler: gec
Validation C++ compiler: g++
WikiText
Archiver

Hex/Bin converter: | objcopy

Listing generator: objdump

ar

Size command:

Build command:

mingw32-make

Remove command:

Toaolchain path: | C:/Program Files (x86)/GNU Tools ARM Embedded/4.8 2014q1/bin

(to change it use the global or workspace preferences pages or the proje

Figure 29 - Build command

Go to the “Tool Settings” tab and click on “Target Processor”. Change the values of the following fields.
This is also shown in Figure 30.

e ARM family = cortex-m4
o Float ABI = FB instructions (hard)
e FPU Type = fpv4-sp-d16

Builders
w C/C++ Build
Build Variables
Environment

Configuration: | Debug [Active]

(2 Preprocessor
@ Includes
(% Optimization
(# Warnings
@ Miscellanecus
w B3 Cross ARM GNU C Linker
@ General
(2 Libraries
@ Miscellaneous
~ B3 Cross ARM GMU Create Flash Image
(# General

Figure 30 - Target processor

Unaligned access
Adpchod farmily
Feature cre
Feature crypto
Feature fp
Feature simd

Code rmodel

Logging & Tool Settings 3 Toolchains ! Devices .j" Build Steps Build Artifact Binary Parsers

Settings

Tool Chain Editor (2 Target Processor ARM family cortex-md

- L
c/ C-E_oflé ::::l g \?\,:?:;a:lon Architecture Toolchain default
Project References (% Debugging Instructionset | Thumb (-mthumb)
Run/Debug Settings v & Cross ARM GNU Assembler [Thumb interwark (-mthumb-interwork)
Task Repository (2 Preprocessar
Task Tags 3 Includes Endianness Toolchain default
Validation @ Warnings Float ABI P instructions (hard)
WikiText (# Miscellaneous
~ B Cross ARM GNU C Compiler FPU Type fpvd-sp-d16

Toolchain default
Generic (-mcpu=generic)
Taolchain default
Toolchain default
Teolchain default
Enabled (+simd)

Small (-mcmodel=small)

Still in the “Tool Settings” tab go to “Cross ARM GNU C Compiler” - Preprocessor. Add the symbols

below:
e CPU MCIMX7D M4

e DEBUG

Copyright 2020 © Embedded Artists AB

RevE

Working with Cortex-M4 on iMX7 Dual Page 34

e FPU PRESENT

e ARM MATH CM4

=] Properties for m4_hello_world

type filter text Settings
' :E'SI:u . (% Target Processor [] Do not search system directories (-nostding)
uilders
w CfC++ Build (% Optimization [Preprocess only (-E)
>)
Build Variables % Warnings Defined symbols (D)
Environment (=2 Debugging
Logging ~ 3 Cross ARM GMU Assembler CPU_MCIMXTD_M4
i @ Preprocessor _ DEBUG
oy B Includ __FPU_PRESENT
Tool Chain Editor %@ neludes [ARMMATHCMA |
Tools Paths (2 Warnings
s CfC++ General @ Miscellaneous
Project References ~ 83 Cross ARM GNU C Compiler
ey
Run/Debug Settings %; Preprocessor
» Task Repository = |r1C|deles .
Task Tags @ Optimization
» Validation (# Warnings
WikiText @ Miscellaneous
~ 3 Cross ARM GMU C Linker
= General :
(% Libraries Undefined symbals (-U)

Figure 31 - Preprocessor symbols

Still in the “Tool Settings” tab go to “Cross ARM GNU C Linker” - General. Add the workspace path to
the linker file that is going to be used. Since we are building an application for OCRAM we select
platform/devices/MCIMX7D/linker/gcc/MCIMC7D M4 ocram.ld.

iettings

(%2 Target Processor Script files (-T) & & G2
(2 Optimization e e = = = = =
(2 Warnings ${workspace loc/${ProjNamel/platform/devices/MCIMXTD/ linker/gcc/MCIMXTD_M4 ocram.ld}
(# Debugging
~ 3 Cross ARM GNU Assembler
(2 Preprocessor
(2 Includes
(# Warnings
@ Miscellaneous
~ 3 Cross ARM GNU C Compiler
(2 Preprocessor
@ Includes
(# Optimization
(# Warnings
@ Miscellaneous
~ 3 Cross ARM GNU C Linker
(# General
@ Libraries
(# Miscellaneous
~ [Cross ARM GNU Create Flash Image

-

Figure 32 - Linker file

Still in the Linker group select “Miscellaneous”. Check the “Use newlib-nano” checkbox and enter
“-specs=nosys.specs” in the “Other linker flags” field. These settings are shown in Figure 33.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual

i Tool Settings &3 Toolchains M Devices # Build Steps

Build Artifact Binary Parsers @ Error Pi

(5 Target Processor
@ Optimization
(2 Warnings
(# Debugging
~ 3 Cross ARM GNU Assembler
(2 Prepracessor
(2 Includes
Warnings
Miscellaneous
~ 3 Cross ARM GNU C Compiler
(2 Preprocessor
 Includes
@ Optimization
(2 Warnings
(2 Miscellaneous
~ 3 Cross ARM GNU C Linker
@ General
(2 Libraries
(% Miscellaneous
~ 3 Cross ARM GNU Create Flash Image
@ General
v B Cross ARM GNU Print Size
% General

Linker flags (-Xlinker [option])

Other objects

Generate map | "${BuildArtifactFileBaseName}.map"

[] Cross reference (-Xlinker --cref)

[Print link map (-Xlinker --print-map)

Use newlib-nano (--specs=nano.specs)
[] Use float with nano printf (-u _printf_float)
[[] Use float with nano scanf {-u _scanf_float)
[Verbose (-v)

Other linker flags | -SpECS=NOSYS.Specs

Figure 33 - Misc linker settings

In the “Tool Settings” tab go to “Cross ARM GNU Create Flash Image”. Change output format to “Raw

binary”.

Settings

Configuration: | Debug [Active]

@ Tool Settings @ Toolchains ! Devices ,ﬁ' Build Steps

(# Target Processor
@ Optimization
@ Warnings
(%2 Debugging
~ B8 Cross ARM GNU Assembler
(2 Preprocessor
@ Includes
(2 Warnings
(% Miscellaneous
w B3 Cross ARM GNU C Compiler
@ Preprocessor
Includes
(% Optimization
(22 Warnings
@ Miscellaneous
w BB Cross ARM GMU C Linker
General
@ Libraries
(2 Miscellaneous
w BB Cross ARM GMU Create Flash Image
(% General

Figure 34 - Create Flash Image

Copyright 2020 © Embedded Artists AB

Build Artifact Binary Parsers @ Erne

Output file format (-Qf | Raw binary

[Section: -j .text
[]Section: -j .data

Other sections (-}

RevE

Working with Cortex-M4 on iMX7 Dual Page 36

6.5.7 Update linker file and build application

The default setting in the linker file doesn’t match the other instructions in this document. We need to
change the memory area in the linker file. In section 6.5.6 we chose the linker file for OCRAM memory
(platform/devices/MCIMX7D/linker/gcc/MCIMC7D M4 ocram.1d). Open this file
and go to the section called MEMORY. Change m _interrupts 0 0x00910000andm_text to
0x00910240 as shown in Figure 35.

oS3 DLALEK DLLE = UERELNED| STackK =S1zZe) 7 STacK S51Ze IoUEUgLUg
54

55 /* Specify the memory areas =/

56 HEMORY

574

52 m_interrupts (BX) : ORIGIN = 0Ox00910000, LENGIH = 0x00000240
552 m text (RX) : ORIGIN = 0x00910240, LENGTH = 0x00007DCO
60 m _data [REW) : ORIGIN = 0x20000000, LENGTH = 0xO00008000
61}

62

63 _ FLASH START
64 __FLASH END

sC

ORIGIN(m_interrupts);
ORIGIN (m_text) + LENGTH(m text);

Figure 35 - Memory areain linker file

Now it is time to build the application. This can, for example, be done by clicking on the “Build” icon in
the toolbar as shown in Figure 36. It can also be done by right-clicking on the project and then click on
“Build Project”.

actor avigate \Search Project Run Window Help
| &\~]~ S @-e-l

H 5 ild 'Debug’ for project 'md_hello_world' le &2 l
52 HEAP SIZE DEFINED(__
53 STACK_STIZE DEFINED (__

54

55 /% Specify the memory
56 MEMORY
574

o

w

m interrupts
m text
m data

[=RT el

@y

Figure 36 - Build icon

When the application has been built there will be a binary file in the project’s “Debug” folder. Use the
instructions in section 4.4 to run this application on target. It is also possible to download and debug
the application by following the instructions in section 6.6 below.

6.6 Debug using Eclipse

Before following the instructions in this section you must have followed the instructions in section 6.5
and being able to build an application.

6.6.1 LPC-Link 2 with J-Link firmware

We are going to use an LPC-Link 2 with Segger’s J-Link firmware as debug adapter. Follow the
instructions on the link below to prepare an LPC-Link 2 with the J-Link firmware.

Instructions
https://lwww.segger.com/Ipc-link-2.html
LPC-Link 2

http://www.embeddedartists.com/products/Ipcxpresso/lpclink2.php

Copyright 2020 © Embedded Artists AB RevE

https://www.segger.com/lpc-link-2.html
http://www.embeddedartists.com/products/lpcxpresso/lpclink2.php

Working with Cortex-M4 on iMX7 Dual Page 37

6.6.2 J-Link GDB Server

Segger’s J-Link GDB Server is used when debugging the target. Download and install the “J-Link
Software and Documentation Pack”. This package contains the GDB server.

https://lwww.segger.com/downloads/jlink

6.6.3 J-Link script files

A script file is needed when connecting to the M4 core using J-Link. Segger has published script files
for both the A7 cores and M4 core. You need to download at least the script file for the M4 core.

https://wiki.segger.com/IMX7D

6.6.4 Connect LPC-Link 2 to the board
Begin by connecting the LPC-Link 2 to the Debug interface board as shown in Figure 37.

e 3

T
sss a0
e BE.
o)

Sf

S B TTETEEEEE Lo ggqguggu Ir

D
o)
é@
2
™

! g‘:o(O
€ 4z

-lpt !

—| 90000000~

Connect the FPC cable for the Debug interface board to the connector on the COM Board as shown in
Figure 38.

Copyright 2020 © Embedded Artists AB RevE

https://www.segger.com/downloads/jlink
https://wiki.segger.com/IMX7D

Working with Cortex-M4 on iMX7 Dual Page 38

Also make sure that the LPC-Link 2 board is connected to your PC via a USB cable.

6.6.5 Create a debug configuration

In Eclipse go to Run = Debug Configurations and then select “GDB SEGGER J-Link Debugging”.
Create a new “launch configuration” by clicking on the icon shown in Figure 39.

& Debug Configurations

Create, manage, and run configurations

O | SR Configure launch settings from this dialog:

type filter text - Press the 'Mew’ button to create a configuration of the selecte

[©] C/C++ Application -~
[E] C/C++ Attach to Application

€] C/C++ Postmortem Debugger

[£] C/C++ Remote Application

[c| GDB Hardware Debugging

[&] GDB OpenOCD Debugging

[£] GDB PyOCD Debugging

E GDEB QEMU Debugging Configure launch perspective settings from the 'Perspectives’ prefer
[t GDB SEGGER J-Link Debugging

&' IronPython Run

PU IronPython unittest

EG Java Applet

3] Java Application

Jiu JUnit

- Press the 'Duplicate’ button te copy the selected configuratio

- Press the 'Delete’ button to remove the selected configuratior

- Press the 'Filter' button to configure filtering options.

- Edit er view an existing configuration by selecting it.

Go to the “Debugger” tab. When writing these instructions there was no support for iMX7 Dual devices,
but device name must be specified in order to use the debug configuration.

1. Enter “mcimx7d” as device name.
2. Select “JTAG” as interface

3. Inthe “Other options” field add -script file and the path to the script file downloaded in
section 6.6.3 above.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual

|| Name: | mé_hello_world Debug
Main :f; Debugger . = Startupw 'E‘é/ Source} S| Qommon}

J-Link GDB Server Setup ()
Start the J-Link GDB server locally [[] Connect to running target

Executable: | $jlink_path}/${jlink_gdbserver} Browse...| | Variables...

o~ ——

Device name:q mcirm:Td) | Supported device names
Endianness: (®) Little () Big

Connection: @ USB (p | | (USE serial or IP name/address)
Interface: (I SWD @ JTAG

Initial speed: (O Aute () Adaptive (@) Fixed kHz

GDE port: 2331
SWO port: 2332 Verify downloads [~] Initialize registers on start
Telnet port: 2333 Local hostonly []Silent
Log file: | | Browse...

L —

Other options: | -singlerun -strict -timeout 0 -nogdGc‘riLtﬁle E:\Develop\iMX\debugging\NXP_@onned|
Allocate console for the GDB server Allocate console for semihosting and SWO

GDE Client Setup
Executable: | ${cross_prefixjgdbS{cross_suffix} Browse... | Vanables...
Oithar antinne | L

Figure 40 - Debugger tab

Go to the “Startup” tab and then “Runtime Options”. Select “RAM application” as shown in Figure 41.

Name: | md_hello_world Debug |

Main ﬁﬁ: Debugger (P Startup E/ Source} = Qommon}

Load Symbels and Executable
Load symbols
(®) Use project binary: m4_hello_world.elf

() Use file: Workspace... File System...

Load executable
(®) Use project binary: md_hello_world.elf

() Use file: Workspace... File System...

Executable offset (hex): l:l

seation (reload after each reset/restart)

Run/Restart Commands

Pre-run/Restart reset, Type: I:I (always executed at Restart)

[]5et program counter at (hex):

Continue

[SO W S .

Figure 41 - Startup tab

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual

6.6.6 Start a debug session
There are several ways to start a debug session. One way is to click on the “Debug” button if the
“Debug configurations” window is still open as shown in Figure 42.

Runtime Options
RAM application (relead after each reset/restart)

Run/Restart Commands

Pre-run/Restart reset, Type: l:l (always executed at Restart)

[J5et program counter at (hex):

Continue

Restore defaults

Apply Rewert

Figure 42 - Start Debug session

When starting the debug session the J—Link terms and conditions must be accepted by clicking the
“Accept” button.

J-Link V6.14 - Terms of use

The connected emulator iz a LPC-Link 2 running aJ-Link. compatible firmware.
In arder to make uge of this firmware, the following Terms OF Use must be accepted.

TERMS OF USE A

1] The firmware is only to be uzed with NP target devices. Using it with ather devices is prohibited and
ilzgal.

2] The firmware is for uze with evaluation boards anly. [tis nat for uze with custarn hardware.

3] The firmware may only be used for development and/or evaluation purposes. It may not be used for
production purposes.

4] The firmware iz made available without any warranty and without support.

) The firmware may be used with the NxP LPC-LINK 2 platform only.

Far more information, pleaze refer to http: 2w, segger. comelpc-link-2. html

If there iz any doubt if a certain uge may be considered within the foregoing scope,
it iz strongly recommended to consult SEGGER prior to use.
I order to contact SEGGER. please vizit http:/ Awwiw.segger. com/contact-us. himl

For development on target hardware, we recommend our industry leading
J-Link PRO [hitp: Asw. segoer. com/jlink-pro.ktml)

J-Link Ulra+ [http:/Aenane, segger. comAlink-ultra-plus. html)

J-Link PLUS [http:/ e, segger. com/link-plus. html)

J-Link. [http:/ ey, zegger. com/Alink. html)

For profezsional production flazh programming we recommend: v

[~ Do nat show this message again for today Decline | Accept

Figure 43 - J-Link Terms and conditions

Since we haven't specified a correct device we have to select which target to debug. Select a generic
Cortex-M4 as shown in Figure 44.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 41

SEGGER J-Link V&.14 - Target device settings *
Filter - -
M anufachurer Device Core Little endian =
ﬂ | |x ﬂ Care #0
 anufacturer | Device | Care | MWumCores | Flazh zize | RAM size | h
Unspecified ARMT ARMT 1 - -
Unzpecified ARMI ARMI 1
Unzpecified ARM11 ARMT1 1
Unspecified Cortex-A5 Cortex-45 1
Unzpecified Cortes-47 Cortes-a7 1
Unspecified Cortes-48 Cortex-88 1
Unzpecified Cortex-49 Cortex-49 1
Unzpecified Cortex-412 Cortex-812 1
Unspecified Cortes-415 Cortes-815 1
Unzpecified Cortex-417 Cortex-817 1
Unzpecified Cortex-k0 Cortex-t0 1
Unspecified Cortes-k 0+ Cortex-t0 1
Unspecified Cortex-t1 Cortex-k1 1 - -
Unzpecifies Cortex-t3 Cortes-3 1 - -
4 Corterhid Cortexhid I T S
Cortex-t7 Cortex-t7 1 - -
Unspec@f@ed Cortex-t23 Cortex-23 1 "
Select a device for J-Link.
Selecting a device is not required for most devices, but allows more efficient operation of J-Link. az well as flash
download, modification of flash memory during a debug session az well as unlimited breakpoints in flash memary (Flash
Breakpoints). Cancel
In caze of doubt, select the first entry in the list "Unspecified Device".

Figure 44 - J-Link device selection

Click Ok and the debug connection will be established.

NOTE 1: We have seen that you might have to start an application on the Cortex-M4 before
being able to debug a new application. Follow the instructions in section 4.3 to start an
application.

NOTE 2: One thing we have seen when debugging is that the second time you establish a
debug session you can get a strange behaviour. The debug session will halt in the main
function and you can single step, but when the FreeRTOS scheduler is started you end up in
the prvPortStartFirstTask function and won’t get out of this function. When writing these
instructions we don’t know the reason why this happens. The workaround is to reset the
board between debug sessions.

6.7 Build with IAR Embedded Workbench

The FreeRTOS bundle contains project files for IAR Embedded Workbench and the documentation
also contains instructions.

NOTE: Embedded Artists has not tested the project files or documentation for IAR
Embedded Workbench

Copyright 2020 © Embedded Artists AB RevE

7 Use DS-MDK for application development

DS-MDK is a commercial Eclipse based IDE and debugger from ARM/Keil. The development
environment comes with support for NXP’s application processors and especially those supporting

Heterogeneous Multi-Processing such as the i.MX7 Dual.
http://www2.keil.com/mdk5/ds-mdk/

This chapter describes how to install and use DS-MDK. The instructions are based on the document

“Getting Started with DS-MDK” from ARM.

https://armkeil.blob.core.windows.net/product/gs DS-MDK 5 24 2 en rev3.pdf

7.1 Installation

Begin by installing MDK ARM. You will find the installer and instructions on the link below. Please note
that MDK exists in a limited evaluation version, but it is a commercial product so if you want to continue

to use it you need to buy a license.
https://www.keil.com/demo/eval/arm.htm

When MDK ARM has been installed download and install DS-MDK. Installer and instructions are

available on the link below.
http://www2.keil.com/mdk5/ds-mdk/install/

When you start DS-MDK you have to specify where you installed MDK ARM and also choose a

workspace directory for your project.

7.2 Package Manager

DS-MDK comes with a package manager that lets you install drivers and example programs for a

specific device.

Open the Pack Manager by going to Window - Perspective > Open Perspective > CMSIS Pack

Manager in the menu.

In the Pack Manager, go to NXP - i.MX 7 Series and then i.MX 7Dual. In the Packs view click on

Install button for the Keil iMX7D_DFP package as shown in Figure 45.

& CMSIS Pack Manager - Eclipse Platform
File Edit Mavigate Search Project Run Window Help
R e e
‘M Devices 32 B Boards = @ ‘ Cﬁ ¥ = 8 @Packs 12
type filter text Search Pack
Device Summary o Pack
w @ NXP 573 Devices w ® Device Specific
“ 1.MX B Series 12 Devices % Clarinox.Wireless
v 4 iMX T Series 2 Devices %y Kell IMXTD_DFP
> ‘)IS 1L.MX 7Dual 1 Device w @ Generic
“2 i.MX TSolo 1 Device % ARM.CMSIS
*)Ig K Series 1 Device ‘% ARM.CMSIS-Driver_Validation
“‘E KOD Series 2 Devices % ARM.CMSIS-FreeRTOS
“‘E K10 Series 23 Devices % ARM.CMSIS-RTOS Validation
“fﬁ K20 Series 43 Devices % ARM.mbedClient
“fﬁ K30 Series & Devices % ARM.mbedTLS
5 K40 Series 6 Devices % ARM.minar
% K50 Series 12 Devices % Huawei.LiteO5
“I% K80 Series 18 Devices % Keil ARM_Compiler
“I% K70 Series 4 Devices % Keil Jansson
“% KB8D Series 2 Devices % Keil MDK-Middleware
44 KEAxx Series & Devices % TwiP.hwlP
*rg KExox Series 21 Devices % Micrium.RTOS
42 Kok Series 55 Devices ‘% Oryx-Embedded.Middleware
A2 KMo Series 14 Devices ‘% RealTimelogic.SharkSSL-Lite
A2 KSwor Series 2 Devices % RealTimelogic.SMQ
“‘E KV Series 23 Devices
“fﬁ KW Series 14 Devices
“1% LPCBOD Series 12 Devices

Figure 45 - CMSIS Pack Manager

Copyright 2020 © Embedded Artists AB

Action Description
2 Packs i.MX 7Dual selected

nstall ~&{grinox Bluetooth Clz
Install . NXJ iL.MX 7Dual Famil
&R oftware Packs with g

I_. Uptodate CMSIS (Cortex Microc
Ié_ Install . CMSIS-Driver Validatic
I<§_ Install . Bundle of FreeRTOS fc
I{§_ Install . CMSIS-RTOS Validatio
I{} Install . ARM mbed Client for
I@ Install _ ARM mbed Cryptogra
@ Install . mbed 05 Scheduler fe

& Install . Huawei LiteOS kernel
|€ Uptodate Keil ARM Compiler ex
I@_ Install _ Jansson is a C library f
€ Uptodste Middleware for Keil M
I@_ Install . IwiP is a light-weight i
&z Install _ Micrium software con
Ié_ Install . Middleware Package (
Ié_ Install . SharkS5L-Lite is a sup:
I<§_ Install . Simple Message Quew

% YOGITECH.fRSTL_ARMCIV_EVAL I<§ Deprecated !!! DEPRECATED Produ
% YOGITECH.FRSTL_STM32Fx_EVAL I@ Deprecated, !!! DEPRECATED Produ

Working with Cortex-M4 on iMX7 Dual Page 42

RevE

http://www2.keil.com/mdk5/ds-mdk/
https://armkeil.blob.core.windows.net/product/gs_DS-MDK_5_24_2_en_rev3.pdf
https://www.keil.com/demo/eval/arm.htm
http://www2.keil.com/mdk5/ds-mdk/install/

Working with Cortex-M4 on iMX7 Dual Page 43

When beginning with the application development it is recommended to use one of the existing
example applications as a starting point. We are going to use the RPMSG TTY examples, that is, an
application that show how to communicate between a Linux application running on the A7 core and an
application running on the M4 core.

Go to the Examples tab in the Pack manager and then click on the Copy button for the RPMSG TTY
RTX (iMX7-Dual-COM) example as shown in Figure 46.

1% » @
{8 Packs | Bxamples 57 [Only show examples from installed packs ‘ @ | & 2 Y= 0 | =rack. B & O
Search Example E@® -
Example Action Description type fifter text

CMSIS-RTOS Blinky (Colibri-iMXT7) € Copy CMSIS-RTOS based Blinky example for Cortex-M4 v KeiliMX7D_DFP.1,

CMSIS-RTOS Blinky (iMX7-Dual-COM) |4 Copy CMSIS-RTOS based Elinky example for Cortex-M4 Bl Boards

CMSIS-RTOS Blinky (IMX7-PHYBOARD-ZETA) Ij) Copy CMSIS-RTOS based Blinky example for Cortex-M4 4 Components

CMSIS-RTOS Blinky (MCIMX7D-SABRE) |4 Copy CMSIS-RTOS based Blinky example for Cortex-M4 B Devices

Frequency Bin (MCIMX7D-SAERE) Ij) Copy CMSIS-RTOS RTX, CMSIS-DSP Lib, ADC and RPMSG TTY example f 2 Examples

Linux Application TTY (Colibri-iMXT7) Ij) Copy Linux Application TTY example

Linux Application TTY (iMX7-Dual-COM]) Ij) Copy Linux Application TTY example

Linux Application TTY (IMX7-PHYBOARD-ZETA) Ij) Copy Linux Application TTY example

Linux Application TTY (MCIMX7D-SABRE) Ij) Copy Linux Application TTY example

RPMSG PingPang BM (Celibri-iMXT7) Ij) Copy Bare-Metal RPMSG PingPong example for Cortex-M4

RPMSG PingPong BM (iMX7-Dual-COM) |ji Copy Bare-Metal RPMSG PingPong example for Cortex-M4

RPMS5G PingPong BM (IMX7-PHYBOARD-ZETA) Ij) Copy Bare-Metal RPMSG PingPong example for Cortex-M4

RPMSG PingPong BM (MCIMXTD-SABRE) % Copy Bare-Metal RPMSG PingPong example for Cortex-M4

RPMSG PingPong RTX (Colibri-iMX7) l¢» Copy CMSIS-RTOS RTX RPMSG PingPong example for Cortex-M4

RPMSG PingPong RTX (iIMK7-Dual-COM) Ij) Copy CMSIS-RTOS RTX RPMSG PingPong example for Cortex-M4

RPMSG PingPong RTX (IMX7-PHYBOARD-ZETA) % Copy CMSIS-RTOS RTX RPMSG PingPong example for Cortex-M4

RPMSG PingPong RTX (MCIMX7D-SABRE) l¢» Copy CMSIS-RTOS RTX RPMSG PingPong example for Cortex-M4

RPMSG TTY RTX (Colibri-iMX7) = opy. 5IS-RTOS RTX TTY example for Cortex-M4

RPMSG TTY RTX (iMX7-Dual-COM) |j) Copy ChSIS-RTOS RTX TTY example for Cortex-M4

RPMSG TTY RTX (IMX7-PHYBOARD-ZETA) _ MSIS-RTOS RTX TTY example for Cortex-hM4

RPMSG TTY RTX (MCIMX7D-SABRE) % Copy CMSIS-RTOS RTX TTY example for Cortex-M4

Figure 46 - RPMSG TTY Example

The application will now be added to your workspace. Go back to the Pack Manager and click on the
Copy button for the Linux Application TTY (iMX7-Dual-COM). Now you have both the application
that will run on the A7 core and the application that will run on the M4 core in your workspace.

7.3 Debug the M4 Application

7.3.1 Build the application

First build the application. Right-click on the RPMSG project and select Build Project as shown in
Figure 47.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 44

File Edit Source Refactor Mavigate Search Project Run Window Help

o R S AEER S HCANARAEENCASE S A St BTS00 NaR A1)
[ProjectBplorer 32 | B 5 ¥ = O | [g tty_rbee 2
v [£5 Linux Application TTY 129
. 138
[t Includes 1318 /*
5 sre 132 * MU Inteccruph ISR
= Debug 133 *f

134 void BOARD_MU_HANDLER[jvoid)
135 {

|Z| Linux Application TTY.launch
v % RPMSG_TTY_RT>" ***

1 Mew ¥
[t Includes L, romes handler orovided by mi -
(== Debug Go Into o rpmsg_handler provided by middleware
RTE L .
%h d . Open in Mew Window er()s
ardware_in
] thy_rbec [E Copy
? RPMSG_'I‘I'\-’ 3 Delete Lt();
- Maove...
Rename... for the MU Interrupt o
be initialized before rpmsg init is called
ix Import..
(5] Rl RD_MU_BASE_ADDR);
g Export.. brity(BOARD_MU_IRQ_NUM, APP_MU_IRQ PRIORITY);
[RQ(BOARD MU_TIRQ NUM);
& CMSIS C/C++ Project , [RQ(BOARD_MU_TRQ_NUM)
Build Project demo thread */
Clean Project ate (osThread (hread), NULL);

Figure 47 - Build Project

732 Setup the debug adapter

A debug adapter must be connected to the board before the application can be debugged. Section
6.3.1 shows how ULINKpro is connected to the board. We recommend ULINKpro, but have also tested
an LPC-Link 2 with CMSIS-DAP firmware.

733 Create a debug configuration

Go to Run - Debug configurations in the menu. There should be a debug configuration called
RPMSG_TTY_RTX_M4 under the CMSIS DS-5 Debugger as shown in Figure 48.

& Debug Configurations x
g g

Create ge, and run fi ti

Launch a D5-5 debugging session using a CMSIS D5-5 Debugger project.

CRX B3~ Name: | RPMSG_TTV_RTX_M4 |
ype filter text] & Connection - Advanced} & Fla;hw & 0S Awarene;q

[€] C/C++ Application

[€] C/C++ Attach to Applicatior

[€] €/C++ Postmortem Debugg 4 RPMSG_TTY_RTX_M4

[€] C/C++ Remote Application
v 4 CMSIS DS-5 Debugger

W RPMSG_TTY_RTX_M4

#% DS-5 Debugger

&' IronPython Run

a’ IrenPython unittest

Java Applet

Java Application

Ju JUnit

a Jythen run Connection Address | 3FSMNUMW Browse...

a Jython unittest

@ Launch Group
2o T .

Figure 48 - CMSIS DS-5 Debug configuration

Project Selection

Connection Settings

Connection Type CMSIS-DAP ~

Click on the Connection tab and choose Connection Type. In Figure 48 a CMSIS-DAP-enabled LPC-
Link 2 has been connected to the board. You have to select the debug adapter you are using and then
click on the Browse button to find the actual connection (the adapter must be connected to your
computer). When writing these instructions the following debug adapter types could be used.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual

e DSTREAM
e ULINKpro
e CMSIS-DAP

The default settings were used for all other settings. Below are screen shots for the other tabs.

Mame: | RPMSG_TTY_RTX_M4 |

’ Connection ’ Advanced ’ Flash] ’ 0s Awareness]

File Settings

Program image | ﬁ{workspace_loc:fRPMSG_'I'I'Y_R'I'X_MMDEbug.."RPMSG_'I_I"F| File System...| | Workspace...

[JLoad symbols only

Connect and reset

Mo reset Pre-connect reset Hold reset and connect

Run control
(O Connect only

(O Debug from entry point

(® Debug from symbol | main

Scripts

[]Run target initialization debugger script (.ds / .py)

File System...| | Workspace...
[]Run debug initialization debugger script (.ds / .py)

File System...| | Workspace...

Figure 49 - Advanced tab

Mame: | RPMSG_TTY_RTX_M4

’ Connection (‘ Advanced (‘ Flash ‘ 0s Awarenesq

Programming Algorithms

File Region Start Address Region Size
Download Function RAM for Algorithm
Erase Full Chip Program

RAM Start Address:
Erase Sectors Verify

RAM Size:
Do not Erase

Figure 50 - Flash tab

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual

& Connection (‘ Advanced (‘ Flash (‘ 05 Awareness

Select OS awareness:

> |KEL

The Keil® RTX Real-Time Operating System (RTOS) is the ideal choice for small footprint, deterministic
applications running on ARM® Cortex®-A% or Cortex-M series processors, The RTX RTOS is royalty-free and
CMSIS-RTOS compliant, making it an efficient and cost-effective platform for real-time applications.

For more infermation en RTX RTOS and D5-5™ toolchain:
https://developer.arm.com/products/software-development-tecls/ds-5-development-studie/solutions/real-time-

systems

Figure 51 - OS Awareness

When the debug configuration is ready click on the Debug button and a debug session will be
established as shown in Figure 52.

NOTE: Make sure that you have only booted into u-boot on the Cortex-A7 and not into
Linux. See section 7.5 for information about simultaneous debugging of Cortex-M4 and
Cortex-A7.

& DS-5 Debug - RPMSG_TTV_RTX_M4/tty_rtx.c - Eclipse Platform - 0 X
File Edit Source Refactor Mavigate Search Broject Run Window Help

A 5 T s 5 o = N i . q
i [lof % R Q- & - L -Gl - G- | BsdeE
% Debug Control 22 Project Explorer = O |l Commands 2 [History 5 Scripts EEBEE~® =0 -V %E R E fOF Ho 8! = O
D@l wm X% V- PRI AECD %, Linked: RPMSG_TTY_RTX_M4 * -
- wait ~ % Linked: RPMSG_TTY_RTX_M4 -
Execution stopped at breakpoint 1: @x1FFFBE4D
T RPMSG_TTY_RTX_M4 connected In tty rtx.c Tasks | Keil CMSIS-RTOS RT3: Cortex-Md
5 Cortex-M4 #1 stopped OxIFFFBE4G 143,1 -
Deleted temporary breakpoint: 1 Task | Name | Priority | State [Delay |1
wait 255 osidledemon @ READY [
:“t tion stomped at GX1FFFBEAD 1 ocTimerThread 6 WAIT_MBX [
xecution stepped at @x: =
OxIFFFBE42 144,5 hardware_init(); 2 main & RIS 4
v
< >
Status: connected OS Support: Enabled Command:|Press (Ctrl+Space) for Content Assist Submit| | < 5
[g tty_rbec 52 =1 143 Disasses Stack %€ Trace £2 Events Outline =g
g; 1 ~ -EETRR e E 1 NN LT DS RN =
128} % Linked: RPMSG_TTY_RTX_M4Cortex-Md =

Trace Capture Device Source Ranges
. b Buffer Used: 4,0 KB
* MU Interrrupt ISR

~ void BOARD_MU_HANDLER (void)

i
* calls into rpmsg_handler provided by middleware
rpmsg_handler();
i [index| Address | Opcode | | Detail ~
= int main(void) g o inuity (trace butfer has |
{ hardware_init(); é ; er contains no trace for thi
+ o ontinuity (trace buffer has
* Prepare for the MU Interrupt /& Trace buffer contains no trace for thi v
* MU must be initialized before rpmsg init is called < >
Mu_Init (BOARD_MU_BASE_ADOR) 3 B ~pp Console Il Target Console | @ Terminal 1 53| @ Ervor Log =g
NVIC_SetPriority(BOARD_MU_IRQ_NUM, APP_MU_IRQ_PRIORITY);) -
NVIC_EnableTRQ(BOARD_MU_TRQ_NUM) ; M ElEHE &8

No Connection Selected

/* Create a demo thread */
osThreadCreate (osThread (TTYThread), NULL);

5}

Figure 52 - Debug session

7.4 Debug the Linux Application

The Linux application will be debugged using gdbserver over a network connection. This means
that there is no need to use the debug adapter (such as ULINKpro) when debugging the Linux
application. It is however necessary to have the board connected to the same network as your
development computer.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 47

74.1 Build the application

First build the application. Right-click on the Linux Application TTY project and select Build Project
as shown in Figure 53.

& C/C++ - RPMSG_TTY_RTX_M4/tty_rix.c - Eclipse Platform

File Edit Source Refactor

F[‘:, Project Explorer 3
v 5 Linux Application T~

Mavigate Search Project Run

il | B - Q- N E- G 0B iI®m Yo

8% ~ -0

Window Help

[F("Name service handshake is de

. »
[n) Includes New
[src Go Into 2 (true)
(= Debug Open in New Window * Get RPMsg rx buffer with mes:

= Linux Applicatis

esult = rpmsg_rtos_recv_nocopyi

~ i?? RPMSG_TTY_RTX_F E‘% Copy ssert(result == @);
| Includes =
g Debu [E Paste * Copy string from RPMsg rx bui
9 3 Delete ssert(len < sizeof(app_buf));
ﬁ RTE PP_
B h o Move... pemcpy (app_buf, rx__}:u'l_’, I?n),l'
ardware_init.c pp_buf[len] = @; /* End string
@ thy_rbe.c Rename...
[E] MCIMXTD_Cort f ((len == 2) && (app buf[e] =
2 RPMSG_TTY_ R =2 Import... PRINTF("Get New Line From M:
= -~ :lse
by Export..
4 RPMSG_TTY_R1 = = PRINTF("Get Message From Ma:
Build Project

69

Clean Project

Refresh
Close Project
Close Unrelated Projects

Figure 53 - Build Linux application

742

F53

x_buf = rpmsg_rtos_alloc_tx_bui
ssert(tx_buf);
pemcpy(tx_buf, "Hello from Ma!™,

* Send message with nocopy */
esult = rpmsg_rtos_send_nocopyi

Setup Remote System Explorer (RSE)
First get the IP address of the board. You can get this by using the i fconfig utility as shown below

via a terminal application connected to the board.

ssert(result == @8);

ifconfig

ethO Link encap:Ethernet HWaddr CA:71:64:BD:1A:20
inet addr:192.168.1.72 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80:

In DS-MDK, go to Window - Perspective - Open Perspective > Other and then Remote

System Explorer. Click on the icon shown in Figure 54 to create a connection.

% Local Shells

Figure 54 - RSE Perspective

Copyright 2020 © Embedded Artists AB

& Remote System Explorer - RPMSG_TTY_RTX_M4/tty_rte.c

Eile Edit 5ource Refactor Navigate 5Search Projed

= @i eSS
M8 Remote Systems_57 | &5 Team =
| e Bl ¥
*Iy Local Files

RevE

Working with Cortex-M4 on iMX7 Dual Page 48

Choose SSH Only as connection type as shown in Figure 55 and then click Next.

& Mew Connection

Select Remote System Type

Connection for 55H access to remote systems

System type:
[eype fikter text

w = General
T FTP Only
A Linux
El Local
5% S5H Only
unix Unix
B Windows

Figure 55 - Remote System Type

Enter the IP address in the Host name field as shown in Figure 56 and then click Finish to create the
connection.

& New Connection

Remote 55H Only System Connection

Define connection information

Parent profile: Living

Host name: | 192.168.1.72
Connection name: | 192.168.1.72
Description: |

Verify host name

Configure proxy settings

Figure 56 - Host name / IP address

It could now look like in Figure 57. If you click on Sftp Files > My Home you will see the home
directory on the target. You will be asked to enter the user name (root) and password (pass) to

login.

NOTE: By default root is not permitted to login over SSH. Read section 9.1 for a solution to
this problem.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 49

& Remote System Explorer - RPMSG_TTY_RTX_M4/tty_rb

Eile Edit 5Source Refactor Mavigate Search Proj

= NEEE SN S
4§ Remote Systems 53 | %5 Team = 0
£ 3| ¢ BEIS 7

v E’ Local
*ED Local Files
% Local Shells
v T3 192.168.1.72
v ¥y Sftp Files
v }:D My Home
[boot
[tmp
}:D Root
T Ssh Shells
?‘ Ssh Terminals

Figure 57 - Created RSE connection

743 Create Debug Configuration

Go to Run - Debug configurations in the menu. There should be a debug configuration called
Linux Application TTY under the DS-5 Debugger as shown in Figure 58. Click on this configuration
and go to the Connection tab. Select Download and debug application and make sure the RSE
connection we created earlier is used under Connections.

Create, manage, and run configurations

€3 [Files]: Variable references non-existent resource : $workspace_loc:/Linux Application TTY/Debug/Linux Application TTY}

OE X | B 3p~ Name: | Linux Application TTY
type filter text =i Connectio Files] 4 Debuggeﬂ i 08 Awarenesﬂ)= Arguments]] Environmenﬂ

[E] C/C++ Application
[E] C/C++ Attach to Application
[E] C/C++ Postmortem Debugge
[€] C/C++ Remote Application
W CMSIS DS-5 Debugger
~v &% D5-5 Debugger
5 Linux Application TTY
@' IronPython Run
&’ IronPython unittest
Java Applet
Java Application . o
Ju JUnit Start gdbserver and debug target-resident application
&7 Jython run
& lython unittest
= Launch Group
m PyDev Django
43 PyDev Google App Run

Select target

Select the manufacturer, board, project type and debug operation to use. Currently selected:
Linux Application Debug / Application Debug / Connections via gdbserver / Download and debug a

Filter platforms

w Linux Application Debug
w Application Debug
v Connections via gdbserver
Connect to already running application
Download and debug application

DS-5 Debugger will download your application to the target system and then start a new gdbserver s

P
@ Python Run application. This configuration requires ssh and gdbserver on the target platform.
éj Python unittest
E Remote Java Application Connections

RSE connection | 192.168.1.72

Address:

gdbserver (TCP) | port: | 5000
Use Extended Mode

Figure 58 - DS-5 Debugger configuration

Go to the Files tab and select download and working directory. In this example we are using
/home/root/tmp as shown in Figure 59.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual

S Debug Configurations

Create, manage, and run configurations

Create, edit or choose a configuration to launch a D5-3 debugging session.

CEX B3>

type filter text

[E] C/C++ Application
[E] C/C++ Attach to Application
[E] C/C++ Postmortem Debugge
[€] C/C++ Remote Application
> W CMSIS DS-5 Debugger
~v &% DS-5 Debugger
5 Linux Application TTY
@7 IronPython Run
a’ IronPython unittest
i) Java Applet
[T1 Java Application
Ju JUnit
a7 Jythan run
& Jython unittest
= Launch Group
m PyDev Django
23 PyDev Google App Run
ep Python Run
é’ Python unittest
E, Remote Java Application

Figure 59 - Files tab

In the Debugger tab make sure Debug from symbol is chosen and the symbol is set to main as

shown in Figure 60.

Name: | Linux Application TTY

=== Connection ﬁa Files . &% Debuggeﬂ 05 Awarenesﬂ ()= Arguments] % Environr

Target Configuration
Application on host to download:

| $workspace_loc:/Linux Application TTY/Debug/Linux Application TTY}
File System...

Target download directory:
| /home/root/tmp/

Workspace... [] Load symbols

Target working directory:
| /home/root/tmp/

Files

Load symbaols from file ~

File Systemn... | Workspace...

Create, manage, and run configurations

Create, edit or choose a configuration to launch a D5-5 debugging session.

CEX B3~

type filter tesxt

[€] C/C++ Application
[E] C/C++ Attach to Application
[E] C/C++ Postmortem Debugge
[€] C/C++ Remote Application
> 4 CMSIS DS-5 Debugger
~v &% DS-5 Debugger
5 Linux Application TTY
@ IronPython Run
a’ IrenPython unittest
=] Java Applet
[T Java Application
Ju JUnit
a7 Jython run
@ Jython unittest
= Launch Group
m PyDev Django
L3 PyDev Google App Run
eP Python Run
é’ Python unittest
E Remote Java Application

Figure 60 - Debugger tab

Copyright 2020 © Embedded Artists AB

Narme: | Linux Application TTY

<i-- Connection Eﬁ. Files | #5 Debugger

i 05 Awarenessj - Argumentq -] Environmenﬂ

Run control

(O Connect only (O Debug from entry point (®) Debug from symbol | main

[] Run target initialization debugger script (.ds / .py)

File System...

[[] Run debug initialization debugger script (.ds / .py)

File Systern...

[] Execute debugger commands

Host working directory
Use default

S{workspace_loc}

Paths

Source search directory ~

File Systern...

We

We

Wa

File System... | Workspace...

RevE

Working with Cortex-M4 on iMX7 Dual Page 51

Click on the Debug button to start the debug session.

& DS-5 Debug - Linux Application TTV/src/LinuxTTY.c - Eclipse Platform - O x
File Edit Source Refactor Mavigate Search Broject Run Window Help
i NEEE R~ U REal. Il e MRt e e Rl | B E
4% Debug Control 32 oject Explorer = B [Commands 2 [History §3 BaES-#=0 B o R E iF HOo B! = 8
EEART SR T R R R N A R R 5 Linked: Linux Application TTY = -
- Execution stopped in USR mode at @x76FCFBE@ ~ %, Linked: Linux Application TTY =
@x76FCFBER LDR rie,[pc,#148] ; [@x76FCFBIC] = @x2F464
~ & Linux Application TTY connected set debug-from main No tables available Ne data source selected
4 Thread 447#1 stopped on breakpoint start
RPMSG_TTY_RTX_M4 disconnected wait
B - Execution stopped at breakpoint 1: @x@eessrF4 Data source s unavailable
In LinuxTTY.c
0xB00086F4 61,8 [
Deleted temporary breakpoint: 1
v
< >
G Command: Press (Ctrl~Space) for Content Assist || submit
[8 LinuxTTY.c 53 = B |3 Disassembly 5 Memory = Stack |4 Trace &3 [Events 5= Outline = 8
51 if (tesetattr (fd, TCSANOW, &tty) I= 0) - BLED SROAMM MM MG B =
52 B
&, Lin nux Aj n TTY:Thread 447 ~
53 printf ("Error %d from tcsetatte”, errno); 5 Linked: Linux Application TT¥:Thread
54 return -1; Trace Capture Device Source Ranges
55
i return 0 b Buffer Used: 0B
57 }
58
59
60= int main(int argc, char *argv[])
e {
62 char *portname = "/dev/ttyRPMSG";
63
64 int fd = open (portname, O_RDWR | O_NOCTTY | O_SYNC);
Ez ?f (fd < @) |index| Address | Opcode | | Detail |
=~ D Trace is not ensbled.
67 printf ("Error %d opening %s: %s”, errno, portname, strerror (errna)); ! B
68 return -1;
69 1
70
71 set_interface_attribs (fd, Bl1s520@, @);
72
73 write (fd, "Hello from A7!", 14);
74
7S usleep (10000); H App Console [Target Console 8 Termina Error Log | B Console 13 =8
76
77 char buf[14]; oG EREFEI B
78 read (fd, buf, sizeof buf); CDT Build Console [Linux Application TTY]
79 'Building target: Linux Application TTY' ~
80 printf ("Get Message From Remote Side: ¥s", buf); *Invoking: GCC C Linker 4 [arm-linux-gnueabihf]’
81 arm-linux-gnueabihf-gec -0 "Linux Application TTY" ./src/LinuxTTY.o
:i return EXIT_SUCCESS; *Finished building target: Linux Application TTY'
84 ’ h h
< > < >

Figure 61 - Debug session of Linux application

7.5 Simultaneous Debugging
Follow these steps to simultaneously debug RPMSG_TTY_RTX_M4 and Linux Application TTY.

1. Boot into u-boot
2. Change device tree file (dtb) file

=> setenv fdt file imx7dea-com-kit-m4.dtb
=> saveenv

3. Now start the debug session of RPMSG_TTY_RTX_M4 as described in section 7.3 above.

4. ltis not possible to interact with u-boot while RPMSG_TTY_RTX_M4 is halted until RDC has
been initialized. RDC will be initialized in BOARD RdcInit which is called from
hardware init.Letatleastthe call to the function hardware init execute and you
will be able to interact with u-boot.

5. Enter boot in the u-boot console to boot Linux

=> boot

6. Tobe able to use the RPMsg TTY channel a kernel module must be loaded. When Linux has
booted run the following:

modprobe imx rpmsg tty
imx rpmsg tty rpmsg0: new channel: 0x400 -> 0x0!
Install rpmsg tty driver!

7. You can double-check that the module has been loaded by using 1 smod.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 52

lsmod
Module Size Used by
imx rpmsg tty 3418 O

8. When the module has been loaded, start the debug session of the Linux application as
described in 7.4 above.

9. You should now be able to debug the Linux application, for example, single step and when a

message is sent to the M4 application the M4 debug session should halt on the breakpoint at
rpmsg rtos_recv_nocopy.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 53

8 Additional documentation

This chapter contains links to documentation related to heterogeneous multiprocessing.

8.1 Getting started with Multicore Programming for iMX6 SoloX
https://community.nxp.com/docs/DOC-329540

8.2 FTF: i.MX6 SoloX Heterogeneous Multiprocessing
https://community.freescale.com/servlet/JiveServiet/download/611951-1-373200/FTF-DES-F1132.pdf

8.3 Remote Processor Messaging (rpmsg) Framework
https://github.com/torvalds/linux/blob/master/Documentation/rpmsg.txt

8.4 i.MX Linux Reference Manual
Chapter 52 describes Remote Processor Messaging (RPMsg)

https://community.freescale.com/servlet/JiveServlet/download/385560-1-
373635/i.MX_Linux_Reference Manual.pdf

Copyright 2020 © Embedded Artists AB RevE

https://community.nxp.com/docs/DOC-329540
https://community.freescale.com/servlet/JiveServlet/download/611951-1-373200/FTF-DES-F1132.pdf
https://github.com/torvalds/linux/blob/master/Documentation/rpmsg.txt
https://community.freescale.com/servlet/JiveServlet/download/385560-1-373635/i.MX_Linux_Reference_Manual.pdf
https://community.freescale.com/servlet/JiveServlet/download/385560-1-373635/i.MX_Linux_Reference_Manual.pdf

Working with Cortex-M4 on iMX7 Dual Page 54

9 Troubleshooting

9.1 Allow user “root” to use an SSH connection

By default, the user “root” is not permitted to login via an SSH connection. By following these
instructions “root” will be permitted to login through an SSH connection. It is, however, not
recommended to use on a final application, but during development it can be permitted.

1. Open the configuration file for the SSH server

nano /etc/ssh/sshd config

2. Find the line that starts with #PermitRootLogin and remove the ‘# (hash) character. If you
cannot find this line just add it to the file (without the hash)

PermitRootLogin yes

3. Save the file and exit the editor (in nano itis Ctrl-X followed by Y and Enter).
4. Restart the SSH server

/etc/init.d/sshd restart

9.2 LPC-Link 2 with CMSIS-DAP Firmware

9.21 Install the Firmware

If you cannot install CMSIS-DAP firmware on the LPC-Link 2 follow these instructions.
1. Download and install LPCScrypt from NXP

http://www.nxp.com/products/software-and-tools/software-development-tools/software-tools/Ipc-
microcontroller-utilities/Ipcscrypt-v1.8.0:LPCSCRYPT

2. Open JP1 jumper on the LPC-Link 2 and connect the board to your computer
3. From the LPCScrypt installation run “Program LPC-Link2 with CMSIS-DAP”.

B ooy

-1 Boot LPCScrypt

LPCScrypt on the Web

ﬂ U Program LPC-Link2 with CMSIS-DAP

Program LPC-Link2 with CMSI5-...

Program LPC-Link2 with Segger...

Figure 62 - Program LPC-Link2 with CMSIS-DAP

4. A command prompt will appear. Press on a key on your keyboard to start programming the
board. It will look like Figure 63 if programming starts and is successful.

Copyright 2020 © Embedded Artists AB RevE

http://www.nxp.com/products/software-and-tools/software-development-tools/software-tools/lpc-microcontroller-utilities/lpcscrypt-v1.8.0:LPCSCRYPT
http://www.nxp.com/products/software-and-tools/software-development-tools/software-tools/lpc-microcontroller-utilities/lpcscrypt-v1.8.0:LPCSCRYPT

Working with Cortex-M4 on iMX7 Dual Page 55

E® Program LPC-Link2 with CMSIS-DAP - O *

5. Close JP1 jumper on the LPC-Link 2 and power-cycle the board (remove the USB cable and
insert it again).

6. Open the device manager and make sure the LPC-Link 2 shows up under ports as shown in
Figure 64. If it doesn’t appear correctly please follow the instructions in section 9.2.2 for a
possible solution.

@ Matverkskort
w ﬁ Portar (COM och LPT)
ﬁ LPC-Linkll UCom Port (COME)

& USE Serial Port (COM3)

922 LPC-Link 2 doesn’t enumerate with CMSIS-DAP Firmware

If LPC-Link 2 doesn’t enumerate correctly please follow the instructions on the link below. Most often
the problem is related to the driver not being installed.

https://community.nxp.com/thread/389044
Driver package

https://community.nxp.com/serviet/JiveServiet/download/11529-389044-630660-
377765/lpc_driver setup.exe.zip

9.2.3 Cannot find LPC-Link 2 in DS-MDK

If you cannot find LPC-Link 2 when clicking “Browse” in the “Connection Settings” first try to connect
the LPC-Link 2 to a USB2 port instead of a USB3 port (if available). If this doesn’t help try to locate the
debug adapter using Keil uVision 5 (installed when installing MDK ARM).

1. Create a project and select an iMX 7Dual device in the package manager as shown in Figure
65.

Copyright 2020 © Embedded Artists AB RevE

https://community.nxp.com/thread/389044
https://community.nxp.com/servlet/JiveServlet/download/11529-389044-630660-377765/lpc_driver_setup.exe.zip
https://community.nxp.com/servlet/JiveServlet/download/11529-389044-630660-377765/lpc_driver_setup.exe.zip

Working with Cortex-M4 on iMX7 Dual

Select Device for Target ‘Target 1'... x*
Device I
ISoﬁware Packs LI
Vendor: NXP
Device: MCIMX7D Cortex-M4
Toolset: ARM
Search:
Description:
? ARM The i.MX 7Dual family of processors features an advanced ~
@ NXP implementation of the ARM Cortex-A7 core, which operates at speeds
E of up to 1 GHz, as well as the ARM Cortex-M4 core.
=] 0@ i.MX 7 Series - Heterogeneous Multicore Processing Architecture, up to Dual
qg i MX TDual Cortex-A7 and Cortex-M4 corfiguration
& . ua - Extemal Memory Support: DDR3/DDR3L/LPDDR2/LPDOR3
0[3 MCIM - Hash Memory Support: NAND (60-bit ECC), Managed NAND
H (eMMC, e5D)
LMX 75olo - Hetrophoratic: Display (EPD) Cortroller
- Dual Gigabit ETH controllers supporting AVE
- Parallel RGE and MIP| D5I Display Interfaces
- Parallel and MIP1 C51 Camera Interfaces
- 256KE SRAM
«| | _’I -Quad 5PI v
oK I Cancel Help

Figure 65 - Select target in uVision

2. Right-click on the created project and select “Options for Target” as shown in Figure 66.

File Edit Wiew Project Flash Debug Peripherals Tools SWCS

NS E@| % 2R|9 o Bl RN
g & |_|-| %%” Target 1 £\| &=
Praject L = |

=% Project: test2
sd Targ=*
4% Options for Target ‘Target 1'...

Add Group...
ﬁ Manage Project [tems...
Rebuild all target files

Build Target F7

Iz| Show Include File Dependencies

Figure 66 - Options for target

3. Go to the “Debug” tab and select “CMSIS-DAP Debugger” as shown in Figure 67.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual

Options for Target ‘Target 1' X

De\ricel Targetl Ol.rtputl Listingl User I CfCHI Asm I Lir

" Use Simulator with restrictions Settings | + |se: CMSIS-D&P Debugger vl

[~ Limit Speed to Real-Time

Settings |

¥ Load Application at Startup ¥ Run to main ¥ Load Application at Startup ¥ Run to main)
Initialization File: Initialization File:
|] Ea]] et |
Restore Debug Session Settings ————————————————— Restore Debug Session Settings ——————————————————
¥ Ereakpairts ¥ Toolbox v Ereakpoirts v Toolbox
[¥ Watch Windows & Pefformance Analyzer ¥ Watch Windows
¥ Memory Display v System Viewer ¥ Memory Display v System Viewer
CPU DLL: Parameter: Driver DLL: Parameter:
ISAF{MCME‘..DLL I-F{EM:\P ISAF{MCME‘..DLL |
Dialog DLL: Parameter: Dialog DLL: Parameter:
pcmDLL [pCh4 fTCm.DLL [pCh4

Manage Component Viewer Diescription Files ... |

[ok || cancet || Defauts | Help

Figure 67 - uVision Debug tab

4. Click on the “Settings” button and look for the “Serial No” field as shown in Figure 68.

Cortex-M Target Driver Setup

Debug |T|T:|ce I Flash Downloadl Pack I

—CMSIS-DAP - JTAG/SW Adapter — [~ SW Device
LPC-LINKZ CMSIS-DAP V5. 1[Rd IDCODE | Device Name

SWDID !]
Cerial No: [I3FSMUMW & B5EADZ477 ARM CoreSight S
Firmware Version: I'H]—

7 cwl F‘OI‘tZISW 'I % Automatic Detection ID CODE:

' Manual Configuration Device Mame:
Max[]odc:lmMHz "I

add | Delete | Update |

— Debug
Connect & Reset Options Cache Options
Connect: INorrnaI | Reset: ISYSHESI:—I'F{EQ | W Cache Code
¥ Resst after Connect ¥ Cache Memory
[~ Stop after Resst

Figure 68 - LPC-Link 2 Serial No

5. Copy this serial number and enter it into the “Connection Address” field in DS-MDK as shown
in Figure 69.

Copyright 2020 © Embedded Artists AB RevE

Working with Cortex-M4 on iMX7 Dual Page 58

& Debug Configurations

Create, manage, and run configurations

Launch a D5-5 debugging session using a CMSIS D5-5 Debugger project.

CEX B3~ Name: | RPMSG_TTY_RTX_M4
4 Connection & Advance:ﬂ & Flash\l 4 05 Awareness

[T] C/C++ Application

[E] C/C++ Attach to Applicatior

[E] C/C++ Postmortem Debuge & RPMSG_TTY_RTX_M4

[t] C/C++ Remote Application
v A CMSIS DS-5 Debugger

W RPMSG_TTY_RTX_M4

» &% DS-5Debugger

" IrenPython Run

& IrenPython unittest

Java Applet

[Java Application ConnectionType | CMSIS-DAP v

Ju JUnit

@ Jython run Connection Addi€ss | 13FSNUMW)

a Jython unittest

= Launch Group
EA pyDev Django
Figure 69 - DS-MDK Connection Address

Project Selection

Connection Settings

9.3 Linux (A7) terminal/console doesn’t accept input while debugging M4

When you are debugging the M4-core and more specifically when you have halted the M4-core from
within the debugger it can seem as the Linux terminal/console is unresponsive (doesn't accept any
input).

Solution

First of all, make sure you have updated u-boot and Linux to the 4.1.15_2.0.0 version or later. In this
release u-boot will make some RDC initialization that solves part of this problem.

Secondly your M4-application must have assigned the M4 to domain 1 as shown below.
RDC SetDomainID(RDC, rdcMdaM4, BOARD DOMAIN ID, false);

If you are using the example code from NXP this call is being made in board.c =
BOARD RdcInit.BOARD RdcInit iscalled from hardware init.c = hardware init.

Copyright 2020 © Embedded Artists AB RevE

	1 Document Revision History
	2 Introduction
	2.1 Multi-Core
	2.2 Additional Documentation
	2.3 Conventions

	3 Hardware related
	3.1 Prerequisites
	3.2 UART interfaces on COM Carrier board version 1
	3.3 UART interfaces on COM Carrier board version 2
	3.4 Terminal application

	4 Download and start an application
	4.1 Update boot partition with needed files
	4.2 Change the device tree file
	4.3 Run from TCM
	4.4 Run from OCRAM
	4.5 Run from DDR RAM
	4.6 Automatically start the M4 application

	5 Remote communication applications (RPMsg)
	5.1 Ping-pong application
	5.2 TTY application

	6 FreeRTOS
	6.1 Installation
	6.1.1 File Structure

	6.2 Build with ARM DS-5
	6.3 Debug using DS-5
	6.3.1 Setup the hardware
	6.3.2 Import OCRAM version of “hello world”
	6.3.3 Create a new Debug configuration

	6.4 Build with ARM GCC
	6.4.1 Install ARM GCC
	6.4.2 Install MinGW
	6.4.3 Install CMake
	6.4.4 Build Application

	6.5 Build with Eclipse and ARM GCC
	6.5.1 Install “GNU ARM Eclipse” plugins
	6.5.2 Create project: New
	6.5.3 Create project: Linked folders
	6.5.4 Create project: Exclude from build
	6.5.5 Create project: “Include” paths
	6.5.6 Create project: Settings
	6.5.7 Update linker file and build application

	6.6 Debug using Eclipse
	6.6.1 LPC-Link 2 with J-Link firmware
	6.6.2 J-Link GDB Server
	6.6.3 J-Link script files
	6.6.4 Connect LPC-Link 2 to the board
	6.6.5 Create a debug configuration
	6.6.6 Start a debug session

	6.7 Build with IAR Embedded Workbench

	7 Use DS-MDK for application development
	7.1 Installation
	7.2 Package Manager
	7.3 Debug the M4 Application
	7.3.1 Build the application
	7.3.2 Setup the debug adapter
	7.3.3 Create a debug configuration

	7.4 Debug the Linux Application
	7.4.1 Build the application
	7.4.2 Setup Remote System Explorer (RSE)
	7.4.3 Create Debug Configuration

	7.5 Simultaneous Debugging

	8 Additional documentation
	8.1 Getting started with Multicore Programming for iMX6 SoloX
	8.2 FTF: i.MX6 SoloX Heterogeneous Multiprocessing
	8.3 Remote Processor Messaging (rpmsg) Framework
	8.4 i.MX Linux Reference Manual

	9 Troubleshooting
	9.1 Allow user “root” to use an SSH connection
	9.2 LPC-Link 2 with CMSIS-DAP Firmware
	9.2.1 Install the Firmware
	9.2.2 LPC-Link 2 doesn’t enumerate with CMSIS-DAP Firmware
	9.2.3 Cannot find LPC-Link 2 in DS-MDK

	9.3 Linux (A7) terminal/console doesn’t accept input while debugging M4

