
Generated Documentation

Pre-emptive Operating
System
v 1.4.0

Copyright 2000-2005 © Embedded Artists AB

Embedded Artists AB
Västerås Technology Park
Glödgargränd 14
SE-721 30 Västerås
Sweden
Phone +46 (21) 470 22 00
Fax +46 (21) 470 22 00

info@EmbeddedArtists.com
http://www.EmbeddedArtists.com

Copyright 2000-2005 © Embedded Artists AB. All rights reserved.
No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior
written permission of Embedded Artists AB.

Disclaimer
Embedded Artists AB makes no representation or warranties with respect to the contents
hereof and specifically disclaims any implied warranties or merchantability or fitness for any
particular purpose. Information in this publication is subject to change without notice and
does not represent a commitment on the part of Embedded Artists AB.

Trademarks
InfraBed and ESIC are trademarks of Embedded Artists AB. All other brand and product
names mentioned herein are trademarks, services marks, registered trademarks, or registered
service marks of their respective owners and should be treated as such.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 2

Copyright 2000-2005 © Embedded Artists AB

mailto:info@EmbeddedArtists.com
http://www.EmbeddedArtists.com

Table of Contents
1 Configuration 5

2 Description 6
2.1 Process Control Block 6

2.2 Process Model 6

2.2.1 Process Function 7

2.2.2 Priorities 7

2.2.3 Process Creation and System Startup 8

2.3 Synchronization Primitives 9

2.3.1 Event Structure 9

2.3.2 Counting Semaphore 9

2.3.3 Queue 9

2.4 Additional Functionality 10

2.4.1 Timer Process 10

2.5 Statistics 10

2.5.1 Stack Usage 10

2.6 Critical Sections 10

2.6.1 Enable / Disable Interrupts 11

2.7 Interrupt Service Routines 12

2.7.1 LPC2xxx Processor Family Interrupts 12

3 API 15
3.1 API Overview 15

3.2 Structures and Defines 17

3.2.1 Error Codes 18

3.3 High-level 19

3.3.1 osInitTimers 20

3.3.2 osCreateTimer 21

3.3.3 osDeleteTimer 22

3.3.4 osSemInit 23

3.3.5 osSemTake 24

3.3.6 osSemGive 25

3.3.7 osSemTryTake 26

3.3.8 osSleep 27

3.3.9 osPid 28

3.3.10 osInit 29

3.3.11 osStart 30

3.3.12 osISREnter 31

3.3.13 osISRExit 32

3.3.14 osDeleteProcess 33

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 3

Copyright 2000-2005 © Embedded Artists AB

3.3.15 osCreateProcess 34

3.3.16 osStartProcess 35

3.3.17 osGetOverrunCounter 36

3.3.18 osSuspend 37

3.3.19 osResume 38

3.3.20 osCreateQueue 39

3.3.21 osPendQueue 40

3.3.22 osAcceptQueue 41

3.3.23 osFlushQueue 42

3.3.24 osPostQueue 43

3.3.25 osPostFrontQueue 44

3.3.26 osStackUsage 45

3.3.27 m_os_ena_int 46

3.3.28 m_os_dis_int 47

3.4 Low-level 48

3.5 Hooks 49

3.5.1 m_os_user_tick 50

4 To-do 51
4.1 Timer Process 51

4.1.1 TIMERSTACK_SIZE 51

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 4

Copyright 2000-2005 © Embedded Artists AB

1 Configuration
The ESIC Pre-emptive Operating System v 1.4.0 was generated on 2005-03-15 20:27:10.
The configuration settings used in the code generation are summarized in Table 1 below.

Configuration Value

Instances Multiple

Restrictions A process can have any priority

Specify number of priorities 5

Specify number of processes 5

Include support for cyclic scheduling false

Process Creation Dynamic

Hardware Abstraction Layer Philips LPC2xxx Series

Compiler GCC

Instruction Mode for Processes Thumb mode

Tick Timer Timer 0

Prescale 0

Ticks 147459

Disable/Enable Interrupt Save current setting

Counting semaphore true

Binary semaphore false

Signal false

Queue true

API Both

Counter Size 16-bit

Enable semaphore counter limit false

Queue API Both

Idle process false

Timer process true

Suspend/resume true

Dynamic Memory Manager None

Enable stack usage statistics true

Error Reporting Return error code via supplied pointer

Check that supplied process identification numbers are
correct

true

Check that supplied priorities are correct true

Check interrupt context true

Check pointers true

Check process allocation true

Include debug support false

Generate a sample application that illustrates the
functionality

false

Table 1: Configurations

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 5

Copyright 2000-2005 © Embedded Artists AB

2 Description
2.1 Process Control Block
The process control block (PCB) contains all relevant information about a process instance
that the RTOS needs in order to control the execution. The table below lists the data fields in
the process control block.

pStk Pointer to the top of the stack.

pid The process identification descriptor, which is a
sequential number.

pNextPrioQueueReady The PCB is placed in a double linked list - one list
for each priority level. The list function as a priority
list/queue. This forward pointer is used for the ready
queue.

pPrevPrioQueueReady Previous pointer in the double linked list (prioritized
queue). Also see pNextPrioQueueReady description
above.

pNextPrioQueueEvent The PCB is placed in a double linked list - one list
for each priority level. The list function as a priority
list/queue. This forward pointer is used for event
queues. A process may only be placed in one event
queue at the time.

pPrevPrioQueueEvent Previous pointer in the double linked list (prioritized
queue). Also see pNextPrioQueueEvent description
above.

pNextTimeQueue If the PCB is placed in a (single linked) timeout list,
this pointer points to the next PCB in the timeout list.
The list is a delta list, i.e., each position only contains
the difference (in time) from the previous position.

prio The process priority. The lower number, the higher
priority.

sleep Number of system ticks to sleep. This number is
relative to the previous PCB in the timeout list, i.e.,
the list is a delta list.

flag Process state flags.

pStkOrg Pointer to the start of the original stack area, i.e., the
stack area supplied when the process was created.
The information is used when checking stack usage.

stackSize The size of the initial stack area. The information is
used when checking stack usage.

Table 2: Process Control Block Data Structure

The stack pointer (pStk) is placed first in the data structure since this makes it more
convenient to access it from assembly language. Some functions in the HAL is typically
written in assembly language.

The RTOS must be able to access a PCB quickly, since it is a very common operation. All
PCB:s in a system is typically organized in a data structure (described further in section
'Priorities'). This data structure is also commonly called the 'ready list'.

2.2 Process Model
The process model defines the lifecycle and certain properties of the processes. This section
describes the entities and properties related to the process model. The process entry function

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 6

Copyright 2000-2005 © Embedded Artists AB

is one fundamental entity in a multiprocessing (also commonly called multitasking)
environment and is described in a subsection of its own. In the priority subsection the ready
list organization and scheduling is described since these are closely related to priority
handling. The last subsection of this section describes how process creation works internally.

2.2.1 Process Function
The process function is the entry point for the process. It is supplied to the operating system
when a process is created.

A process in the system must run forever, i.e., the process function is not allowed to do an
exit or return. However, even with this restriction it is possible for the process to terminate
itself by calling the deleteProcess operating system function.

Since a process can have multiple instantiations there must be a way to pass different
information to each instance. A process function takes one argument of type: void pointer, in
which such information can be passed. It is up to the application designer/programmer to
decide what information to pass. The actual information that is passed to an instance is
specified when the process instance is created (by a call to the processCreate operating
system function).

2.2.2 Priorities
The operating system always runs the process with the highest priority (selected amongst the
processes that are ready to run). If a process with higher priority (than the currently running
process) gets ready to run, the running process will be pre-empted and the process with the
higher priority is run instead.

A process in the system is allowed to have any priority from zero to the maximum number of
priorities minus one. The lower the number, the higher the priority (which is the de facto
standard). Zero is hence the highest priority and the maximum number minus one is the
lowest priority.

If two processes have identical priority they will be run in a round-robin fashion. A
re-scheduling occurs every operating system tick, as well as in some operating system
functions. On average, processes with the same priority will get the same amount of
processor time (provided that they do not enter a blocking state).

The operating system maintains a so called ready list, which containing all processes ready to
run. The ready list is organized as an array indexed with priority and every element of the
array points to a double linked list of process control blocks (PCB) for processes with the
same priority. Conceptually this is the same as having one ready-list for each priority level, as
illustrated below.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 7

Copyright 2000-2005 © Embedded Artists AB

Figure 1: PCB Ready List Organization

During a context switch the operating system searches the array, implementing the ready list,
starting with the highest priority, i.e. priority zero, and continues until a non-empty list is
found. The first process is picked from the list and the list is circulated to obtain round-robin
scheduling.

Observe that only PCB:s for processes that are ready to run are placed in the ready list.
Processes in a blocking state have their respective PCB:s placed in other data structures
(typically in the timeout list, which is a delta sorted list).

2.2.3 Process Creation and System Startup
It is a good practice when initializing a multiprocessing application to have a separate
initialization process. Consequently, the 'main'-function only creates the initialization
process, starts it, and finally starts the operating system. In addition, some specific hardware
initialization can also be performed first in the 'main'-function. This is typically done when
initialization is time critical.

The initialization process, in turn, creates and starts the application processes and creates
shared operating system objects like semaphores, queues, and timers. When the initialization
process has performed all initialization and started all application processes, it can safely
delete itself. In order to get a controlled startup sequence, the initialization process has the
highest priority (i.e., priority zero). This guarantees that no other process will start executing
until the initialization process is done and has deleted itself.

int main(...)
{

//if needed, perform time critical hardware initialization
...

//create and start initialization process (prcInit)
...

//start operating system
//(before this call, only create and start process calls are allowed)
osStart();

return 0;

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 8

Copyright 2000-2005 © Embedded Artists AB

}

//highest priority process
void prcInit(...)
{

//create and start all application processes
...

//delete itself
...

}

This startup structure is also a good practice since no other operating system calls than create
process and start process is allowed until the operating system has been started.

Observe that the 'main'-function's stack size will be set by the startup code (the crt0-file, or
similar). In order not to waste valuable RAM space, the stack should be set as small as
possible. Since only time critical hardware initialization and startup of the initialization
process is performed in the main-function. The stack size can be very small (unless the
hardware initialization is very complex and nested). It is for example not recommended to
make a printf()-call in the main-function since this will typically need a lot of stack space.
Also observe that the operating system call to create and start the initialization process as
well as the 'start operating system' call requires some stack space.

Besides a structured system initialization, it is also advised to have a structured process
initialization. A typical process prototype is listed below. Before entering the forever loop all
initialization related to the specific process is performed.

void prcA(...)
{

//initialization related to the process
...

//enter forever loop
while(1)
{
//body of process
...

}
}

2.3 Synchronization Primitives
This section described the different synchronization primitives.

2.3.1 Event Structure
An event structure is an abstraction that the operating system uses for implementing several
different synchronization primitives. There are three functions that operates on an event
structure: initializing the structure, waiting on an event, and signaling an event. If there is a
process waiting on a specific event, and that event is signaled, the process will exit the
blocked state and be flagged as ready to run. I.e., the PCB will be placed in the ready list. If
there are more than one process waiting on the specific event the process with the highest
priority will be moved to the ready list. The other processes will remain blocked.

2.3.2 Counting Semaphore
The counting semaphore keeps an internal counter, as the name suggests, that is incremented
each time the 'give'-function is called and is decremented for each 'take'-call. The operating
system will not check for overruns resulting from counter wrap-around, it will just silently
wrap around. The counting semaphore makes use of the event mechanism described above.

2.3.3 Queue

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 9

Copyright 2000-2005 © Embedded Artists AB

A queue is a mechanism to send messages between processes much like the signal
synchronization primitive, but with one distinction. When a message is posted to a queue any
process can read the message (i.e., receive it), as opposed to a signal that is addressed to a
specific process.

The queue implementation makes use of the event mechanism described above.

2.4 Additional Functionality
This section describes some additional functionality that has been included in the operating
system. The functionality is not considered as core functionality in an operating system, and
can easily be implemented with the basic primitives. However, the functionality presented
below has been pre-coded for increased convenience.

2.4.1 Timer Process
A timer process adds support for timers in the operating system. A timer allows an
application to execute a specific piece of code (which is the timer's callback function) after a
certain specified time delay.

A timer is said to be armed when it is activated and it is said to fire when the delay expires. A
timer can either be single-shot or periodic. A periodic timer is re-armed after the callback
function returns. The user supplies the callback function and the time delay value when the
timer is created.

The timer process runs at the highest priority (i.e., at priority value zero). The process is
responsible for calling timer callback functions. This means that all callbacks execute at the
highest system priority. The execution time of a callback function should hence be kept as
short as possible in order not to block lower priority processes.

Internally, the timer counters are decremented by the system tick function. When a timer's
counter reach zero the system tick function signal a counting semaphore. This semaphore
represents the number of timers that have reached zero (and should be fired). The timer
process, in turn, waits on this counting semaphore and is therefore only awaken when there is
a timer to fire.

2.5 Statistics

2.5.1 Stack Usage
When a process is created the operating system will fill the stack area with a predefined
bit-pattern. When a process requests the stack usage (calculated as a percentage value) the
operating system will investigate how much of the stack that is unused (i.e., has the original
bit-pattern intact).

2.6 Critical Sections
In addition to semaphores (that can be selected in the configuration process) the operating
system also offers critical sections by disabling interrupts. Internally, the operating system is
protecting critical sections by disabling interrupts. Two strategies can be used when
disabling/enabling interrupts. The first is just to turn off interrupts when entering a critical
section and then turn them on when leaving the critical section. Another way is to save the
current state somewhere, for example push it on the stack or storing it in a local variable. The
current state of the interrupt enable/disable flag is typically found in the processor status
register. When leaving the critical section, the state is restored to its previous/original state.
This way, interrupts will remain disabled if they were disabled before the critical section was
entered. The second solution is hence more general and lower the risk of unintentionally
enable interrupts.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 10

Copyright 2000-2005 © Embedded Artists AB

As mentioned before the operating system disables interrupts when entering a critical section
and therefore it is important to be aware of which method that is in use since it will affect the
interrupt status after a system call. If the first method is used the user cannot assume that
interrupts will remain disabled after a system call regardless of context; application processes
or interrupt service routines. If the second method is used the user cannot assume that
interrupts will remain disabled after a system call in application process context (if a context
switch occurs and anoher process starts executing with interrupts enabled), but on the other
hand if the system call is made from an interrupt service routine the user may assume that the
interrupt status is preserved.

The preferred way of creating critical sections is to use binary semaphores, since they have
only slightly larger overhead than simply modifying the interrupt enable/disable flag in the
processor status register. However, if data is shared between a process and an interrupt
service routine that is not set-up to allow for system calls the preferred way is just to turn off
that particular interrupt instead of turning off all interrupts.

2.6.1 Enable / Disable Interrupts
There exists three routines for controlling interrupt enable/disable. These are:

• tSR halDisableInterrupts_oshal(void); That returns the current status register, before
disabling interrupts (both IRQ and FIQ).

• void halEnableInterrupts_oshal(void); That unconditionally enable interrupts (both IRQ
and FIQ).

• void halRestoreInterrupts_oshal(tSR restoreValue); That restore the state to the
parameter value.

There are two different ways of using these routines. Either enabling or disabling of
interrupts is done explicitly, regardless of previous state. Then the functions:
halDisableInterrupts_oshal and halEnableInterrupts_oshal are used. Alternatively, the current
state is stored when disabling interrupts. This state is then used when enabling again. Then
the function: halDisableInterrupts_oshal and halRestoreInterrupts_oshal are used. The macros
m_os_dis_int() and m_os_ena_int() are connected to these functions:

#define m_os_dis_int() {localSR = halDisableInterrupts_oshal();}
#define m_os_ena_int() {halRestoreInterrupts_oshal(localSR);}

There exist a define that can be used:

#define tSR tU32

This define declares a variable type that equals the status register of the processor. All
functions/processes that must enable/disable interrupts must declare a variable of this type,
and the name must be localSR, see example below.

void anyFunction(void)
{
tSR localSR;
... //other local variables

... //some code that execute with enabled IRQ
m_os_dis_int();
... //some code that must execute with disabled IRQ
m_os_ena_int();
... //some code that execute with enabled IRQ

}

It is recommended not to enable interrupts in an ISR (Interrupt Service Routine). Nested
interrupts require more stack space and can be difficult to analyze.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 11

Copyright 2000-2005 © Embedded Artists AB

2.7 Interrupt Service Routines
Some system calls are allowed from interrupt service routines and others are not. The rule is
that a system call that can result in a wait state is not allowed, since an interrupt service
routine cannot be put idle (i.e., block waiting for a specific event).

Before a system call is allowed to be used in an interrupt service routine the operating system
must be aware of that the system is running in foreground context (i.e., in interrupt context).
The operating system has an internal variable that specifies the interrupt service routine
nesting depth (isrNesting). If isrNesting is zero the system is executing in background context
(i.e., an application process) and if it is greater than zero the system is executing in
foreground context. If system calls need to be executed from an interrupt service routine the
isrNesting variable must be increased by one when entering the ISR and decreased by one
when leaving the ISR. In addition the stack frame must have a correct layout. The actual
stack layout is completely hardware abstraction layer dependent. By mimicking the tick
interrupt service routine (implemented by the hardware abstraction layer) the stack layout
will be correct and no time will be wasted correcting the stack layout (when system calls are
used).

To have total control of the stack layout the interrupt handler(s) must generally be written in
assembly language. The interrupt handler creates the correct stack layout, increment
isrNesting (HAL ISR Enter function), calls the actual interrupt service routine (ISR), calls the
HAL ISR Exit function, and finally restores the registers and the stack. Observe that the
actual ISR may very well be written in ANSI-C.

The HAL ISR Exit function will check if a process with higher priority than the currently
running process has been made ready to run. If that is the case a context switch is initiated.
This is the reason why the stack must have a certain layout before the ISR exit function is
called.

The HAL ISR Enter function is called: osISREnter and the HAL ISR Exit function is called:
osISRExit.

Interrupt handlers (ISRs) that make use of functions in a pre-emptive operating system are
sometimes said to be 'operating system aware'.

2.7.1 LPC2xxx Processor Family Interrupts
Philips LPC2xxx series of microcontrollers includes a Vectored Interrupt Controller (VIC),
which is a very flexible interrupt controller. It takes 32 interrupt request inputs that can be
assigned into 3 categories, FIQ, vectored IRQ, and non-vectored IRQ. The programmable
assignment scheme means that priorities can be dynamically assigned and adjusted. The VIC
can also supply the address of the respective ISR handler directly to the processor. This will
minimize the time spent figuring out which interrupt source that actually requested the
interrupt.

The pre-designed HAL for ARM7 processors (like Philips LPC2xxx) is built around one
common IRQ handler. All interrupts execute this common code, which is listed below. First
the correct stack frame layout is created (observe that this is done in System execution mode),
then isrNesting is incremented in order to inform the operating system that an interrupt is
executing. The stack pointer of the interrupted process is saved if it is the first nesting of
interrupts, i.e., if isrNesting equals one. By doing this, the code becomes independent of
compiler code optimization (that sometimes changes the stack layout in order to optimize the
code). At this point, the stack frame layout is correct and the operating system is informed
that an interrupt is executing. This means that ISR may call functions in the pre-emptive
operating system.

After this initial handling, the actual ISR is executed (function: handleIRQs). Observe that
this is done in IRQ execution mode. Finally, the function osISRExit is called in order to

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 12

Copyright 2000-2005 © Embedded Artists AB

check if a context switch should be performed. If not the common IRQ handler returns to the
originally interrupted process.

HandlerIRQ:
STMFD SP!,{R1-R3}
MOV R1,SP
ADD SP,SP,#12
SUB R2,LR,#4
MRS R3,SPSR
MSR CPSR_c,#(NO_INT | MODE_SYS)

@
@ Save interrupted process contex
@
STMFD SP!,{R2} @ Push adjusted return PC
STMFD SP!,{R4-R12,LR}
LDMFD R1!,{R4-R6} @ Move R1-R3 from IRQ to SYS stack
STMFD SP!,{R4-R6}
STMFD SP!,{R0} @ Push R0
STMFD SP!,{R3} @ Push CPSR (actually IRQ's SPSR)

@
@ isrNesting++ => block scheduling during interrupts
@
LDR R0,addr_isrNesting @ R0 = &isrNesting
LDRB R1,[R0] @ R1 = isrNesting
ADD R1,R1,#1 @ R1 = R1 + 1
STRB R1,[R0] @ Store new value of 'isrNesting'

@
@ Check if (isrNesting == 1)
@
CMP R1,#1
BNE HandlerIRQ_cont

@
@ Store SP (only done if isrNesting == 1)
@
LDR R4,addr_pRunProc @ R4 = &pRunProc
LDR R5,[R4] @ R5 = pRunProc
STR SP,[R5] @ Store SP of the pre-empted process

HandlerIRQ_cont:
@
@ Switch back to IRQ mode
@ Execute specific ISR for the interrupt
@ Switch back to SYSTEM mode
@
MSR CPSR_c,#(NO_INT | MODE_IRQ)

BL handleIRQs @ Now jump to the specific ISR

MSR CPSR_c,#(NO_INT | MODE_SYS)

@
@ Inform the OS that the interrupt is (soon) over.
@ Check if time to perform a context switch.
@
BL osISRExit

@
@ Restore interrupted process context and return
@
LDMFD SP!,{R4}
MSR CPSR_cxsf,R4
LDMFD SP!,{R0-R12,LR,PC} @ Restore regs of interrupted context

The ISR handler is actually a C function, as listed below. It just reads the actually ISR
handler addresses from VIC directly. It is a very simple and effective solution. The individual
ISR handlers (their starting addresses) are registered in VIC registers. This must of course be
done by the application code.

/* Declare a function pointer to a: void XXX(void); function */
typedef void (*PFNCT)(void);

void
handleIRQs(void)
{
PFNCT pfnct;

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 13

Copyright 2000-2005 © Embedded Artists AB

/* Read the interrupt vector from the VIC */
pfnct = (PFNCT)VICVectAddr;

/* Handle ALL interrupting devices */
while (pfnct != (PFNCT)0)
{

/* Call ISR for interrupting device */
(*pfnct)();
/* Read the interrupt vector from the VIC */
pfnct = (PFNCT)VICVectAddr;

}
}

The code below illustrates how a typical ISR handler is written. First the interrupt condition
is handled, the interrupt flag is reset (may also be done first), and then finally the VIC is
informed that the ISR has reached its end. VIC must be informed of this since there can be
other pending interrupts. Observe that all interrupt sources must be acknowledged before
returning from an interrupt handler. Else, the IRQ/FIQ will be re-entered immediately on
return.

/* Exemple of the general structure of an ISR */
void
MyISR_Handler(void)
{
/* Service the interrupting device */
/* Buffer the data (if any) and signal to process the data */
/* Clear the interrupting device (i.e. acknowledge the device) */
/* Inform VIC */

}

/* Exemple of the specific ISR handler for OS timer ticks */
void
timerIsr(void)
{
TIMER0_IR = 0xff; /* reset all IRQ flags in timer #0 */
osTick();
VICVectAddr = 0; /* Inform VIC that ISR has reached its end */

}

The structure above also applies for FIQ interrupts. It is advised to only have one interrupt
source for the FIQ interrupt.

Observe that ISR handlers can (with advantage) be written as C-functions and thay should not
be declared as interrupts functions (just plain C-function). The ISR handlers must neither call
the osISREnter nor osISRExit function.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 14

Copyright 2000-2005 © Embedded Artists AB

3 API
3.1 API Overview
The interfaces of an ESIC are defined from a service perspective, i.e., the application code
accesses an ESIC function through the high level interface (requests a service) and the ESIC
returns the results (if any). If the ESIC in turn requires some other (low-level) service to carry
out the request, this service is accessed through the low level interface of the ESIC. When
carrying out the requested service, an ESIC supports calling optional user-defined functions
called hooks. The figure below shows an overview of the interfaces of the Pre-emptive
Operating System.

Note: The interfaces of an ESIC are governed by the user configuration.

Figure 2: API Overview

The following interface functions are exposed by the Pre-emptive Operating System ESIC.

High-level Interface
osInitTimers 20
osCreateTimer 21
osDeleteTimer 22
osSemInit 23
osSemTake 24
osSemGive 25
osSemTryTake 26
osSleep 27
osPid 28
osInit 29
osStart 30
osISREnter 31
osISRExit 32
osDeleteProcess 33
osCreateProcess 34
osStartProcess 35

osSuspend 37
osResume 38
osCreateQueue 39
osPendQueue 40
osAcceptQueue 41
osFlushQueue 42

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 15

Copyright 2000-2005 © Embedded Artists AB

osPostQueue 43
osPostFrontQueue 44
osStackUsage 45
m_os_ena_int 46
m_os_dis_int 47

Low-level Interface

There are no low-level interface functions

Hooks
m_os_user_tick 50

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 16

Copyright 2000-2005 © Embedded Artists AB

3.2 Structures and Defines

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 17

Copyright 2000-2005 © Embedded Artists AB

3.2.1 Error Codes
• OS_OK (0x00) - Operation completed successfully

• OS_ERROR_NULL (0x01) - A NULL pointer was supplied as an argument that is not
allowed to be NULL.

• OS_ERROR_ISR (0x02) - The operation is not allowed inside an interrupt service
routine.

• OS_ERROR_PID (0x04) - An illegal pid was supplied to the function.

• OS_ERROR_ALLOCATE (0x05) - Out of process control blocks

• OS_ERROR_STATE (0x06) - Trying to resume a process that is not suspended.

• OS_ERROR_QUEUE_FULL (0x07) - The queue is full.

• OS_ERROR_TIMEOUT (0x08) - The operation returned due to a timeout.

• OS_ERROR_PRIO (0x09) - The priority level is out of range.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 18

Copyright 2000-2005 © Embedded Artists AB

3.3 High-level
The configurable interface towards the application enables the developer to choose how to
interface towards the infrastructure function (call-back or blocking interface, copying or
non-copying interface, etc.). This greatly minimizes the integration work for the application
programmer, since the application interface can be customized to match the system
architecture of the target application.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 19

Copyright 2000-2005 © Embedded Artists AB

3.3.1 osInitTimers
void osInitTimers(tU8* pError)

This function initializes the timer process. The timer process runs on the highest priority,
i.e. 0, and executes the timer callback function when a timer expires. No other process
should be run on this priority.

Parameters:

[out] pError - The return status of the function.

Possible error situations (what can be identified in an error code):

OS_OK - The function completed successfully.

OS_ERROR_ALLOCATE - The timer process could not be
created since there was no free process control blocks
available. The number of process control blocks is
specified during operating system configuration (maximum
number of processes).

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 20

Copyright 2000-2005 © Embedded Artists AB

3.3.2 osCreateTimer
void osCreateTimer(tTimer* pTimer, void (*callback)(void),
tBool repeat, tU32 time)

This function initializes a timer. A timer is initialized with a timer value, specified in
timer ticks. When the specified time has elapsed the timer is said to fire. When a timer
fire the callback function of the timer is executed. A timer can be set to be repeatable. A
repeatable timer is reactivated once the callback function has returned. The timer
structure must be allocated, statically or dynamically, by the user before this function is
used. osCreateTimer does not allocate the structure, it initializes and queues the timer.

Parameters:

[in] pTimer - A pointer to an allocated timer structure.

[in] callback - The callback to be used when the timer fires.

[in] repeat - If TRUE the timer will be reactivated as soon as the callback function
has returned.

[in] time - The initial timer value, specified in system ticks.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 21

Copyright 2000-2005 © Embedded Artists AB

3.3.3 osDeleteTimer
void osDeleteTimer(tTimer* pTimer, tU8* pError)

This function deletes a timer. The timer structure is not de-allocated, only removed from
the timer queue. If the timer has already fired and is not repeatable there is no need to
call this function. It is only meaningful to call this function on a timer that is armed but
not fired.

Parameters:

[in] pTimer - A pointer to the timer to delete.

[out] pError - The return status of the function.

Possible error situations (what can be identified in an error code):

OS_OK - The function completed successfully.

OS_ERROR_NULL - A NULL pointer was supplied to the
function where it was not allowed.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 22

Copyright 2000-2005 © Embedded Artists AB

3.3.4 osSemInit
void osSemInit(tCntSem* pSem, tU16 initial)

This function initializes a counting semaphore and must be called before any other
function is used on the semaphore.

Parameters:

[in] pSem - A pointer to an allocated counting semaphore structure.

[in] initial - The initial counter value.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 23

Copyright 2000-2005 © Embedded Artists AB

3.3.5 osSemTake
tBool osSemTake(tCntSem* pSem, tU32 timeout, tU8* pError)

This function takes a counting semaphore, i.e. decreasing the semaphore counting. If the
semaphore counter is zero the function will block until another process or an ISR gives
the semaphore or a timeout occurs.

Parameters:

[in] pSem - A pointer to an initialized semaphore structure.

[in] timeout - After timeout ticks the operation will timeout. A timeout of zero
means no timeout at all.

[out] pError - The return status of the function.

Returns:

TRUE if semaphore was taken and FALSE if timeout or error.

Possible error situations (what can be identified in an error code):

OS_OK - The function completed successfully.

OS_ERROR_ISR - The function was called from an interrupt
service routine.

OS_ERROR_NULL - A NULL pointer was supplied to the
function where it was not allowed.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 24

Copyright 2000-2005 © Embedded Artists AB

3.3.6 osSemGive
void osSemGive(tCntSem* pSem, tU8* pError)

This function gives a counting semaphore, i.e. increases the semaphore counter. If there
are one or more processes waiting for the semaphore the process with highest priority is
made ready to run.

Parameters:

[in] pSem - A pointer to an initialized semaphore structure.

[out] pError - The return status of the function.

Possible error situations (what can be identified in an error code):

OS_OK - The function completed successfully.

OS_ERROR_NULL - A NULL pointer was supplied to the
function where it was not allowed.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 25

Copyright 2000-2005 © Embedded Artists AB

3.3.7 osSemTryTake
tU8 osSemTryTake(tCntSem* pSem, tU8* pError)

This function tries to take a counting semaphore. If the semaphore cannot be taken the
function immediately returns instead of blocking. This function can be used from an ISR
(interrupt service routine).

Parameters:

[in] pSem - A pointer to an initialized semaphore structure.

[out] pError - The return status of the function.

Returns:

0 if the semaphore was taken, else 1.

Possible error situations (what can be identified in an error code):

OS_OK - The function completed successfully.

OS_ERROR_NULL - A NULL pointer was supplied to the
function where it was not allowed.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 26

Copyright 2000-2005 © Embedded Artists AB

3.3.8 osSleep
void osSleep(tU32 ticks)

This function puts a process to sleep for the specified number of ticks.

Parameters:

[in] ticks - The number of ticks to put the process to sleep.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 27

Copyright 2000-2005 © Embedded Artists AB

3.3.9 osPid
tU8 osPid(tU8* pError)

This function returns the process identification descriptor for the running process.

Parameters:

[out] pError - The return status of the function.

Returns:

The process identification descriptor of the currently running process.

Possible error situations (what can be identified in an error code):

OS_OK - The function completed successfully.

OS_ERROR_ISR - The function was called from an interrupt
service routine.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 28

Copyright 2000-2005 © Embedded Artists AB

3.3.10 osInit
void osInit(void)

This function must be called before any other call to the operating system.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 29

Copyright 2000-2005 © Embedded Artists AB

3.3.11 osStart
void osStart(void)

This function starts the operating system. There must be at least one process created and
started before this function is called. A process is created by calling osCreateProcess and
started by calling osStartProcess. osStart, osCreateProcess and osStartProcess are the
only operating system functions that may be called before the operating system is started.
If other operating system functions are called before the operating system is started the
behavior is undefined. The preferred way of starting up a multitasking system is to only
create and start an init process in the main function before osStart is called. The init
process initializes the system and starts other processes needed. The init process can
safely initialize other operating system objects like semaphores, queues, etc.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 30

Copyright 2000-2005 © Embedded Artists AB

3.3.12 osISREnter
void osISREnter(void)

This function is used to notify the operating system that the application has entered an
interrupt service routine (ISR). This is important if the ISR is using services from the
operating system, since some services need to know if they are executed from an ISR or
not. The function osISRExit should be used before the ISR returns to notify the operating
system about the ISR exit.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 31

Copyright 2000-2005 © Embedded Artists AB

3.3.13 osISRExit
void osISRExit(void)

This function is used to notify the operating system that the currently serviced interrupt
is about to exit. The function is always used in conjunction with the function osISREnter,
which should always be called before osISRExit. It is important to notify the OS about
ISRs (Interrupt Service Routines) if they are using services from the operating system
(since some services need to know if they are executed from an ISR or not).

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 32

Copyright 2000-2005 © Embedded Artists AB

3.3.14 osDeleteProcess
void osDeleteProcess(void)

This function deletes the currently running process. The process control block used by
the process will be freed and is therefore available for new processes.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 33

Copyright 2000-2005 © Embedded Artists AB

3.3.15 osCreateProcess
void osCreateProcess(void (*pProc)(void* arg), tU8* pStk,
tU16 stkSize, tU8* pPid, tU8 prio, void* pParam, tU8* pError)

This function creates a new process. The process is not automatically started. To start the
process the osStartProcess function must be called. A new process can only be created if
there is a free process control block available. The number of process control blocks is
specified during operating system configuration (maximum number of processes).

Parameters:

[in] pProc - The process entry function.

[in] pStk - A pointer to the stack area to use. The stack area must be allocated
before the process is created.

[in] stkSize - The size of the stack area in bytes.

[out] pPid - The returned process identification descriptor (pid).

[in] prio - The priority of the process. The priority is a number between 0 and
NUM_PRIO-1, where NUM_PRIO is specified during operating system
configuration (maximum number of priorities). 0 is the highest priority level and
NUM_PRIO-1 is the lowest priority level. The operating system will always run the
process that has the highest priority and is ready to run, i.e. is not sleeping,
suspended or waiting for a synchronization primitive. If several processes are run
on the same priority level they are scheduled in a round-robin fashion.

[in] pParam - This parameter is passed to the process entry function when the
process is started.

[out] pError - The return status of the function.

Parameters to (*pProc):

[in] arg - This argument can be used to pass arbitrary information to the
process entry function when the process is started.

Possible error situations (what can be identified in an error code):

OS_OK - The function completed successfully.

OS_ERROR_PRIO - The supplied priority is not correct.

OS_ERROR_ALLOCATE - The process could not be created
since there are no free process control blocks
available. The number of process control blocks is
specified during operating system configuration (maximum
number of processes).

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 34

Copyright 2000-2005 © Embedded Artists AB

3.3.16 osStartProcess
void osStartProcess(tU8 pid, tU8* pError)

This function is used to start a process. The process must previously have been created
by a call to osCreateProcess.

Parameters:

[in] pid - The process identification descriptor (pid) of the process to start. The pid
is returned by osCreateProcess.

[out] pError - The return status of the function.

Possible error situations (what can be identified in an error code):

OS_OK - The function completed successfully.

OS_ERROR_PID - The supplied pid is not correct.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 35

Copyright 2000-2005 © Embedded Artists AB

3.3.18 osSuspend
void osSuspend(void)

This function suspends the currently running process. Another process can resume it by a
call to osResume.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 37

Copyright 2000-2005 © Embedded Artists AB

3.3.19 osResume
void osResume(tU8 pid, tU8* pError)

This function resumes a suspended process. It is valid to do resume on a process that has
not been suspended.

Parameters:

[in] pid - The process to resume.

[out] pError - The return status of the function.

Possible error situations (what can be identified in an error code):

OS_OK - The function completed successfully.

OS_ERROR_PID - The supplied pid is not correct.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 38

Copyright 2000-2005 © Embedded Artists AB

3.3.20 osCreateQueue
void osCreateQueue(tQueue* pQueue, void** pQueueArea, tU16
size)

This function initializes a queue structure.

Parameters:

[in] pQueue - A pointer to an allocated queue structure.

[in] pQueueArea - A pointer to the queue area. The user must allocate the memory
area used by the queue. The queue area is an array of void pointers.

[in] size - The size of the queue area. The size is given in number of void pointers
in the area.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 39

Copyright 2000-2005 © Embedded Artists AB

3.3.21 osPendQueue
void* osPendQueue(tQueue* pQueue, tU16 timeout, tU8* pError)

This function retrieves the first message from the queue. The message is removed from
the queue. If the queue is empty the function will block until there is a message to
retrieve or a timeout occurs.

Parameters:

[in] pQueue - A pointer to an initialized queue structure.

[in] timeout - The number of ticks to wait on a queue before returning. If a timeout
of zero is specified the function will never timeout.

[out] pError - The return status of the function.

Returns:

The first message in the queue or NULL if timeout or error.

Possible error situations (what can be identified in an error code):

OS_OK - The function completed successfully.

OS_ERROR_ISR - The function was called from an interrupt
service routine.

OS_ERROR_NULL - A NULL pointer was supplied to the
function where it was not allowed.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 40

Copyright 2000-2005 © Embedded Artists AB

3.3.22 osAcceptQueue
void* osAcceptQueue(tQueue* pQueue, tU8* pError)

This function tries to receive the first message from the queue. If the queue is empty the
function returns immediately. This function can be called from within an interrupt
service routine (ISR).

Parameters:

[in] pQueue - A pointer to an initialized queue structure.

[out] pError - The return status of the function.

Returns:

The retrieved message or NULL if the queue is empty.

Possible error situations (what can be identified in an error code):

OS_OK - The function completed successfully.

OS_ERROR_NULL - A NULL pointer was supplied to the
function where it was not allowed.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 41

Copyright 2000-2005 © Embedded Artists AB

3.3.23 osFlushQueue
void osFlushQueue(tQueue* pQueue, tU8* pError)

This function clears a queue from all messages.

Parameters:

[in] pQueue - A pointer to an initialized queue.

[out] pError - The return status of the function.

Possible error situations (what can be identified in an error code):

OS_OK - The function completed successfully.

OS_ERROR_NULL - A NULL pointer was supplied to the
function where it was not allowed.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 42

Copyright 2000-2005 © Embedded Artists AB

3.3.24 osPostQueue
void osPostQueue(tQueue* pQueue, void* msg, tU8* pError)

This function posts a new message to the end of the queue.

Parameters:

[in] pQueue - A pointer to an initialized queue structure.

[in] msg - The message to post.

[out] pError - The return status of the function.

Possible error situations (what can be identified in an error code):

OS_ERROR_QUEUE_FULL - The queue is full.

OS_OK - The function completed successfully.

OS_ERROR_NULL - A NULL pointer was supplied to the
function where it was not allowed.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 43

Copyright 2000-2005 © Embedded Artists AB

3.3.25 osPostFrontQueue
void osPostFrontQueue(tQueue* pQueue, void* msg, tU8* pError
)

This function posts a new message to the front of the queue.

Parameters:

[in] pQueue -

[in] msg - The message to post.

[out] pError - The return status of the function.

Possible error situations (what can be identified in an error code):

OS_ERROR_QUEUE_FULL - The queue is full.

OS_OK - The function completed successfully.

OS_ERROR_NULL - A NULL pointer was supplied to the
function where it was not allowed.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 44

Copyright 2000-2005 © Embedded Artists AB

3.3.26 osStackUsage
tU8 osStackUsage(tU8 pid)

This function returns the stack usage. The stack usage is based on the maximum size
used so far, i.e. from the application start to the point where this function is called.

Parameters:

[in] pid - The pid of the process to check.

Returns:

The used fraction of the stack area specified in percent.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 45

Copyright 2000-2005 © Embedded Artists AB

3.3.27 m_os_ena_int
void m_os_ena_int(void)

This macro enables interrupts.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 46

Copyright 2000-2005 © Embedded Artists AB

3.3.28 m_os_dis_int
void m_os_dis_int(void)

This macro disables interrupts.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 47

Copyright 2000-2005 © Embedded Artists AB

3.4 Low-level
As the generated ESIC code is completely independent of the target hardware or operating
system, no hardware specific or operating system commands are utilized. Instead, a highly
configurable low level interface is provided. The low level interface of an ESIC enables the
selection/configuration of interface aspects such as principal access mechanism, where and
how interface data is stored, if and how data is passed between the layers, etc. Only the final
access (service request) to the hardware or operating system function must be provided by the
user, since this is very application and hardware specific.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 48

Copyright 2000-2005 © Embedded Artists AB

3.5 Hooks
To enable user-specific processing hooks are provided which allow a user function to "hook"
into the normal execution flow. Hooks are intended primarily for the inclusion of optional
functionality, i.e., functions that are not critical for the operation of the ESIC such as
gathering statistics or logging of internal events. Since hooks interrupt the normal execution
flow of an ESIC, they should be kept as short as possible to ensure that the ESIC can perform
its intended function within its given parameters.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 49

Copyright 2000-2005 © Embedded Artists AB

3.5.1 m_os_user_tick
#define m_os_user_tick()

This macro is called every system tick by the operating system and can be used by the
application to perform additional work at every tick.

Observe that the amount of code executing in this hook should be kept to a minimum, since
the timer tick will occur often.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 50

Copyright 2000-2005 © Embedded Artists AB

4 To-do
This section describe the necessary integration work that has to be done before the generated
code is fully integrated into a specific system.

4.1 Timer Process

4.1.1 TIMERSTACK_SIZE
This macro defines the size of the timer process' stack. The required stack size is dependent
on how much the callback routines require, the number of interrupts (than may need stack
space), the target processor, and the compiler.

Generated Documentation - Pre-emptive Operating System v 1.4.0 Page 51

Copyright 2000-2005 © Embedded Artists AB

	Embedded Artists AB
	Configuration
	Description
	Process Control Block
	Process Model
	Process Function
	Priorities
	Process Creation and System Startup

	Synchronization Primitives
	Event Structure
	Counting Semaphore
	Queue

	Additional Functionality
	Timer Process

	Statistics
	Stack Usage

	Critical Sections
	Enable / Disable Interrupts

	Interrupt Service Routines
	LPC2xxx Processor Family Interrupts

	API
	API Overview
	Structures and Defines
	Error Codes

	High-level
	osInitTimers
	osCreateTimer
	osDeleteTimer
	osSemInit
	osSemTake
	osSemGive
	osSemTryTake
	osSleep
	osPid
	osInit
	osStart
	osISREnter
	osISRExit
	osDeleteProcess
	osCreateProcess
	osStartProcess
	osGetOverrunCounter
	osSuspend
	osResume
	osCreateQueue
	osPendQueue
	osAcceptQueue
	osFlushQueue
	osPostQueue
	osPostFrontQueue
	osStackUsage
	m_os_ena_int
	m_os_dis_int

	Low-level
	Hooks
	m_os_user_tick

	To-do
	Timer Process
	TIMERSTACK_SIZE

