

 Developing with Qt5 on iMX Developer’s Kits
Copyright 2017 © Embedded Artists AB

Developing with Qt5

on iMX Developer’s Kits

Developing with Qt5 on iMX Developer’s Kits Page 2

Copyright 2017 © Embedded Artists AB Rev A

Embedded Artists AB
Davidshallsgatan 16
SE-211 45 Malmö
Sweden

http://www.EmbeddedArtists.com

Copyright 2017 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of
Embedded Artists AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and
specifically disclaim any implied warranties or merchantability or fitness for any particular purpose.
Information in this publication is subject to change without notice and does not represent a
commitment on the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements on this document. Send your comments
by using the contact form: www.embeddedartists.com/contact.

Trademarks

All brand and product names mentioned herein are trademarks, services marks, registered
trademarks, or registered service marks of their respective owners and should be treated as such.

http://www.embeddedartists.com/

Developing with Qt5 on iMX Developer’s Kits Page 3

Copyright 2017 © Embedded Artists AB Rev A

Table of Contents
1 Document Revision History 4

2 Introduction ... 5

2.1 Conventions .. 5

3 Overview of Qt ... 6

3.1 Licenses .. 6

3.2 User interfaces ... 6

3.2.1 Qt Widgets ... 6

3.2.2 Qt Quick .. 6

3.2.3 Qt WebEngine ... 6

3.3 Qt Essentials ... 6

4 Qt on iMX Developer’s Kits 8

4.1 Yocto image .. 8

4.2 Qt version.. 8

4.3 Supported modules .. 8

4.3.1 Qt Quick .. 9

5 Setup QtCreator .. 10

5.1 Install toolchain .. 10

5.2 Install Qt Creator .. 10

5.3 Configure Qt Creator .. 13

5.3.1 Connection to target .. 16

5.4 Run on target .. 18

Developing with Qt5 on iMX Developer’s Kits Page 4

Copyright 2017 © Embedded Artists AB Rev A

1 Document Revision History
Revision Date Description

A 2017-01-02 First release

Developing with Qt5 on iMX Developer’s Kits Page 5

Copyright 2017 © Embedded Artists AB Rev A

2 Introduction
Qt is a feature rich and cross-platform application framework developed by the Qt Company. Many
associate Qt with GUI development, but it is possible to do much more than just the GUI using the Qt
framework.

This document provides an overview of Qt and step-by-step instructions for setting up Qt Creator - the
development environment for Qt. This is not a complete course in application development using the
Qt framework. For this purpose please visit doc.qt.io.

Additional documentation you might need:

 The Getting Started document for the board you are using.

 The Working with Yocto document

2.1 Conventions

A number of conventions have been used throughout to help the reader better understand the content
of the document.

Constant width text – is used for file system paths and command, utility and tool names.

$ This field illustrates user input in a terminal running on the

development workstation, i.e., on the workstation where you edit,

configure and build Linux

This field illustrates user input on the target hardware, i.e.,

input given to the terminal attached to the COM Board

TThhiiss ffiieelldd iiss uusseedd ttoo iilllluussttrraattee eexxaammppllee ccooddee oorr eexxcceerrpptt ffrroomm aa

ddooccuummeenntt..

This field is used to highlight important information

https://doc.qt.io/

Developing with Qt5 on iMX Developer’s Kits Page 6

Copyright 2017 © Embedded Artists AB Rev A

3 Overview of Qt
Qt is an application framework written in C++ and supported by many platforms such as Linux,
Windows, and OS X. The application framework is mainly developed by the Qt Company, but other
companies and individuals are also involved.

3.1 Licenses

Qt is available under both commercial licenses and open source licenses. The open source licenses
are either GPL or LGPL3 depending on which part of Qt you are looking at. Most of the core libraries
are under GPL while most of the APIs are LGPL3.

Please note that some modules and functionality is only available when using the commercial license.

More information about Qt licensing can be found at www.qt.io/faq/

3.2 User interfaces

Qt offers several ways of developing a user interface; Qt Widgets, Qt Quick, and Qt WebEngine. A
short description of these technologies is available below, but for a more in-depth description and
comparison please visit: doc.qt.io/qt-5/topics-ui.html.

3.2.1 Qt Widgets

The user interface is developed using the C++ programming language often in combination with the
graphical tool Qt Designer. Qt Widgets is often used to create classic desktop-style user interfaces
with a native look and feel. A native look and feel means that the GUI looks as it normally does on the
platform, for example, as normal Windows applications when developing on a Windows platform.

Qt Widgets has not been designed to benefit from a Graphical Processing Unit (GPU) since it is using
a raster paint engine (QPainter) when drawing its graphical elements.

3.2.2 Qt Quick

Qt Quick is described as a module you can use to develop fluid and dynamic user interfaces with
animations and effects - the type of GUI you usually see in mobile devices.

With Qt Quick the user interface is developed using QML – a declarative language with a JSON-like
syntax. The whole application can be written in QML, but normally only the GUI is written in QML and
the other parts of the application is written in C++. As with Qt Widgets there is tool support in the form
of Qt Quick Designer that helps you develop the GUI.

Qt Quick has been designed to be hardware accelerated and has because of this a dependency
towards OpenGL.

NOTE: Not all of Embedded Artists COM boards support QtQuick when using the open source
version of Qt. See section 4.3.1 for more information.

3.2.3 Qt WebEngine

Qt includes a web engine that lets you include web content into the application. This means that the
entire user interface or parts of it can be developed using web technologies such as HTML, CSS, and
JavaScript. For more information about developing with web content visit the link below.

doc.qt.io/qt-5/topics-web-content.html

3.3 Qt Essentials

The foundation of Qt is called Qt Essentials and includes the user interface functionality described
above, but also a lot more. The table below contains a short description of some of the modules in Qt
essentials. For a more complete list and description visit the link below.

doc.qt.io/qt-5/qtmodules.html

http://www.qt.io/faq/
https://doc.qt.io/qt-5/topics-ui.html
http://doc.qt.io/qt-5/topics-web-content.html
https://doc.qt.io/qt-5/qtmodules.html

Developing with Qt5 on iMX Developer’s Kits Page 7

Copyright 2017 © Embedded Artists AB Rev A

Module Description

Qt Core
Non-graphical classes used by other modules. This module, for example,
contains the object communication functionality called “signals and slots”. It also
defines the object model and property system.

Qt Multimedia
Audio, video, radio, and camera functionality. The exact support depends on the
underlying platform.

Qt Network This module contains classes that provide networking (TCP/IP) functionality.

Qt SQL Database functionality is offered through this module.

Qt Test This module provides classes for unit testing.

In addition to all the modules in Qt essentials there are also many add-on modules. Please visit the
link above the table for more details.

Developing with Qt5 on iMX Developer’s Kits Page 8

Copyright 2017 © Embedded Artists AB Rev A

4 Qt on iMX Developer’s Kits
4.1 Yocto image

The Yocto image that adds Qt5 support to the target is fsl-image-qt5. See the document “Working with
Yocto to build Linux” for more information about Yocto and how to build and deploy images.

Before building this image we need to add support for an SFTP server. The SFTP server allows us to
download a Qt application to the target from within Qt Creator.

Open the file <build dir>/conf/local.conf

$ nano conf/local.conf

Locate the IMAGE_INSTALL_append variable and add the following two lines:

 ooppeennsssshh--ssffttpp \\

 ooppeennsssshh--ssffttpp--sseerrvveerr \\

Now you can build the Qt5 image and an SFTP server will be included.

$ bitbake fsl-image-qt5

4.2 Qt version

Embedded Artists provides two Yocto branches (BSP versions). These are mentioned in the document
“Working with Yocto to build Linux”. It is Qt version 5.5.0 that is used in the 3.14.52 branch and
version 5.5.1 that is used in the 4.1.15 branch.

There is a Qt layer called meta-qt5 in Yocto and the version that is used can be found in meta-

qt5/recipes-qt/qt5/qt5-git.inc.

4.3 Supported modules

The table below lists Qt modules and if they are built for a COM board, or not. Even though a module
is available, all functionality hasn’t been tested by Embedded Artists. The table has been compiled by
listing the Qt libraries available in the root file system by running the command below.

$ cd /usr/lib

$ ll | grep Qt

The second column (iMX6Q/D6DL/SX) in the table reflects the Qt support for iMX6 Quad, iMX6 Dual,
iMX6 DualLite and iMX6 SoloX. The third column (iMX7D/iMX6UL) reflects the Qt support for iMX7
Dual COM, iMX7 Dual uCOM, and iMX6 UltraLite.

Module iMX6Q/D/DL/SX iMX7D/iMX6UL

Qt 3D X

Qt Bluetooth X

Qt Concurrent X X

Qt Core X X

Qt D-Bus X X

Developing with Qt5 on iMX Developer’s Kits Page 9

Copyright 2017 © Embedded Artists AB Rev A

Qt GUI X X

Qt Location X

Qt Multimedia X

Qt Multimedia Widgets X

Qt Network X X

Qt NFC X

Qt OpenGL X

Qt Platform X

Qt Positioning X

Qt Print Support X X

Qt QML X

Qt Quick X

Qt Quick Widgets X

Qt Script X

Qt Sensors X

Qt Serial Port X

Qt SQL X X

Qt SVG X

Qt Test X X

Qt WebChannel X

Qt WebSockets X

Qt Widgets X X

Qt XML X X

Qt XML Patterns X

4.3.1 Qt Quick

As mentioned in section 3.2.2 Qt Quick is a module that lets you create nice looking user interfaces.
Because of this many want to use Qt Quick. This module however depends on OpenGL and a
graphical processing unit (GPU) and is therefore not supported on all Embedded Artists COM boards.
It is not supported on iMX6 UltraLite COM, iMX7 Dual COM, and iMX7 Dual uCOM because the
processors on these boards don’t have a GPU.

Even though a board lacks a GPU it could be possible to use Qt Quick with a software rendered
graphical engine. The performance would however be worse than on board that has a GPU. NXP has
therefore decided not to include Qt Quick in the Qt recipes in Yocto.

If you would like to use Qt Quick on boards without a GPU you should have a look at Qt’s module “Qt
Quick 2D Renderer“. This is an alternative renderer for Qt Quick that uses the raster paint engine
instead of OpenGL. Please note that this module is only available in the commercial versions of Qt. For
more information visit the link below.

doc.qt.io/QtQuick2DRenderer/

http://doc.qt.io/QtQuick2DRenderer/

Developing with Qt5 on iMX Developer’s Kits Page 10

Copyright 2017 © Embedded Artists AB Rev A

5 Setup QtCreator
The instructions in this section have been tested on a virtual machine running lubuntu 16.04. The
document “Working with Yocto to build Linux” has a chapter that explains how to create a VMware
based virtual machine running lubuntu.

If you are an experienced Linux user it shouldn’t be a problem getting Qt Creator to run on another
Linux distribution with the instructions below as a guideline.

5.1 Install toolchain

To be able to build Qt applications that will run on Embedded Artists iMX based COM boards a
toolchain is needed. The toolchain contains cross compiler, linker, Qt headers and needed libraries.

The toolchain can be built in Yocto using the meta-toolchain-qt5 image. See the document “Working
with Yocto to build Linux” for more information about Yocto.

$ bitbake meta-toolchain-qt5

The build will result in a file located at <build directory>/tmp/deploy/sdk. The exact

name of the file depends on several parameters, but in our example it is called:

fsl-imx-fb-glibc-x86_64-meta-toolchain-qt5-cortexa9hf-vfp-neon-

toolchain-4.1.15-1.2.0.sh

Part of file name Description

fsl-imx-fb The distribution (DISTRO parameter) used when initializing the build.

x86_64 Architecture of the host computer. In this example a 64-bit Intel x86 platform

4.1.15-1.2.0 BSP version

It is recommended to build this toolchain on your host computer where you will do the Qt development,
but if you have a 64-bit Intel x86 based host computer you can download a pre-built version from
imx.embeddedartsits.com.

$ wget imx.embeddedartists.com/common/fsl-imx-fb-glibc-x86_64-

meta-toolchain-qt5-cortexa9hf-vfp-neon-toolchain-4.1.15-1.2.0.sh

Install the toolchain. It is recommended to use the default settings (such as installation path) when
installing.

$ sudo ./fsl-imx-fb-glibc-x86_64-meta-toolchain-qt5-cortexa9hf-

vfp-neon-toolchain-4.1.15-1.2.0.sh

5.2 Install Qt Creator

Offline installers of Qt Creator are available at: download.qt.io/official_releases/qt/5.7/5.7.0/. The
instructions below are based on instructions from wiki.qt.io/Install_Qt_5_on_Ubuntu.

Download installer

$ wget download.qt.io/official_releases/qt/5.7/5.7.0/qt-

opensource-linux-x64-5.7.0.run

http://imx.embeddedartists.com/common/fsl-imx-fb-glibc-x86_64-meta-toolchain-qt5-cortexa9hf-vfp-neon-toolchain-4.1.15-1.2.0.sh
http://download.qt.io/official_releases/qt/5.7/5.7.0/
https://wiki.qt.io/Install_Qt_5_on_Ubuntu

Developing with Qt5 on iMX Developer’s Kits Page 11

Copyright 2017 © Embedded Artists AB Rev A

Adjust permission

$ chmod +x qt-opensource-linux-x64-5.7.0.run

Run installer

$./qt-opensource-linux-x64-5.7.0.run

In general the default settings have been used when installing Qt Creator. Please note that a Qt
account is required when installing Qt Creator as shown in Figure 1. Choose an existing account or
create a new account. There is no cost associated with a Qt account.

Figure 1 - Log in to a Qt account

The default components to install were selected as shown in Figure 2. If you plan to choose other
components select these at this step. Please note that some components may only be available when
using a commercial version of Qt.

Developing with Qt5 on iMX Developer’s Kits Page 12

Copyright 2017 © Embedded Artists AB Rev A

Figure 2 - Components to install

When Qt Creator has been installed select to launch it and click the “Finish” button and then continue
to the next section of this document.

Figure 3 - Finish install of QtCreator

Developing with Qt5 on iMX Developer’s Kits Page 13

Copyright 2017 © Embedded Artists AB Rev A

5.3 Configure Qt Creator

Qt Qreator needs to be configured to use the toolchain that was previously installed. Begin by opening
the Options dialog: Tools Options.

Figure 4 - Options under Tools menu

Select “Build & Run” in the left menu and then the “Compilers” tab. Click the “Add” button and then
GCC as shown in Figure 5 below.

Developing with Qt5 on iMX Developer’s Kits Page 14

Copyright 2017 © Embedded Artists AB Rev A

Figure 5 - Add new compiler

Choose a name for the compiler and then select the path to the compiler. In this example the compiler
is located at:

/opt/fsl-imx-fb/4.1.15-1.2.0/sysroots/x86_64-pokysdk-

linux/usr/bin/arm-poky-linux-gnueabi/arm-poky-linux-gnueabi-g++

Figure 6 - Compilers tab

Go to the “Debuggers” tab as shown in Figure 7 and click the “Add” button. Select the path to the GDB
debugger. In this example it is located at:

/opt/fsl-imx-fb/4.1.15-1.2.0/sysroots/x86_64-pokysdk-

linux/usr/bin/arm-poky-linux-gnueabi/arm-poky-linux-gnueabi-gdb

Developing with Qt5 on iMX Developer’s Kits Page 15

Copyright 2017 © Embedded Artists AB Rev A

Figure 7 - Debuggers tab

Go to the “Qt Versions” tab as shown in Figure 8 and click the “Add” button. Select the path to qmake.
In this example qmake is located at:

/opt/fsl-imx-fb/4.1.15-1.2.0/sysroots/x86_64-pokysdk-

linux/usr/bin/qt5/qmake

Figure 8 - Qt Versions tab

Go to the “Kits” tab and add a new kit by clicking the “Add” button. Choose a name for the kit and set
“Device type”, “Sysroot”, “Compiler”, “Debugger”, and “Qt version”. Figure 9 shows the settings used
for our setup.

“Sysroot” is in this example set to:

/opt/fsl-imx-fb/4.1.15-1.2.0/sysroots/cortexa9hf-vfp-neon-poky-

linux-gnueabi

Developing with Qt5 on iMX Developer’s Kits Page 16

Copyright 2017 © Embedded Artists AB Rev A

Figure 9 - Kits tab

5.3.1 Connection to target

It is possible to start/stop an application on the device using an SSH connection. To configure this
connection you first have to retrieve some information from the target. The instructions below assume
that you have a terminal application connected to the target.

Get IP address.

ifconfig
eth0 Link encap:Ethernet HWaddr CA:71:64:BD:1A:20

 inet addr:192.168.1.222 Bcast:192.168.1.255 Mask:255.255.255.0

 inet6 addr: fe80:

Allow root login to SSH server:

By default SSH might not allow the user “root” to login. By following these instructions “root” will be
permitted to login through an SSH connection. It is not recommended to use on a final application, but
during development it can be permitted.

1. Open the configuration file for the SSH server

nano /etc/ssh/sshd_config

2. Find the line that starts with #PermitRootLogin and remove the ‘#’ (hash) character. If you
cannot find this line just add it to the file (without the hash)

PPeerrmmiittRRoooottLLooggiinn yyeess

3. Save the file and exit the editor (in nano it is Ctrl-X followed by Y and Enter).

4. Restart the SSH server

/etc/init.d/sshd restart

Developing with Qt5 on iMX Developer’s Kits Page 17

Copyright 2017 © Embedded Artists AB Rev A

Setup a Device in Qt Creator

Go back to Qt Creator, Tools Options and then select “Devices” in the left menu as shown in Figure
10.

Figure 10 - Devices

Click the “Add” button and select “Generic Linux Device as shown in Figure 11.

Figure 11 - Select device type

Give the device a name, enter the IP address, username and password as shown in Figure 12. By
default the password for the user root is pass.

Developing with Qt5 on iMX Developer’s Kits Page 18

Copyright 2017 © Embedded Artists AB Rev A

Figure 12 - IP address and user credentials

Click “Next” and then “Finish” and the connection to the target will be created and tested as shown in
Figure 13.

Figure 13 - Testing connection to target

5.4 Run on target

When you have created an application it is possible to configure the project so that the application is
downloaded and executed on the target. In the example below an application named TestWidget has
been created.

Developing with Qt5 on iMX Developer’s Kits Page 19

Copyright 2017 © Embedded Artists AB Rev A

First you need to prepare the “.pro” file to list target files and define installation path for the files.

1. Click on the “Edit” button and then the .pro file as shown in Figure 14.

Figure 14 - Editing .pro file

2. Add the information listed below in the .pro file. Change “TestWidget” to the name of your
application. You can also change the path if you want the files to be installed somewhere else
on the target.

ttaarrggeett..ffiilleess == TTeessttWWiiddggeett

ttaarrggeett..ppaatthh == //

IINNSSTTAALLLLSS ++== ttaarrggeett

3. Save the file

Now click on the ”Projects” button and then on the ”Run” configuration as shown in Figure 15. In the
“Files to deploy” area you should see the path to the application as well as the remote directory.
Without the changes in the .pro file the application path and remote directory wouldn’t be listed.

Developing with Qt5 on iMX Developer’s Kits Page 20

Copyright 2017 © Embedded Artists AB Rev A

Figure 15 - Run configuration for the project

To be able to start the Qt application on the target some arguments must be given. The “platform”
argument specifies which platform plugin to use. For Embedded Artists COM boards with a GPU and
with a framebuffer as backend you choose eglfs. For the COM boards without a GPU choose

linuxfb as platform. The “plugin” argument specifies the path to the touch device that is used (if you

have a touch screen).

Figure 16 - Application arguments

Developing with Qt5 on iMX Developer’s Kits Page 21

Copyright 2017 © Embedded Artists AB Rev A

It is now be possible to run an application on the target by clicking on the “Play” button. It is also
possible to download and debug an application by clicking on the “Debug” button.

For further information about Qt application development please visit. doc.qt.io/.

https://doc.qt.io/

	1 Document Revision History
	2 Introduction
	2.1 Conventions

	3 Overview of Qt
	3.1 Licenses
	3.2 User interfaces
	3.2.1 Qt Widgets
	3.2.2 Qt Quick
	3.2.3 Qt WebEngine

	3.3 Qt Essentials

	4 Qt on iMX Developer’s Kits
	4.1 Yocto image
	4.2 Qt version
	4.3 Supported modules
	4.3.1 Qt Quick

	5 Setup QtCreator
	5.1 Install toolchain
	5.2 Install Qt Creator
	5.3 Configure Qt Creator
	5.3.1 Connection to target

	5.4 Run on target

