Developing with Qt5 on iMX Developer’s Kits
right 2017 © Embedded Artists AB

Developing with Qt5
on IMX Developer’s Kits

@ Embedded
Artists

Developing with Qt5 on iMX Developer’s Kits Page 2

Embedded Artists AB
Davidshallsgatan 16

SE-211 45 Malmo

Sweden

http://www.EmbeddedArtists.com

Copyright 2017 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of
Embedded Artists AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and
specifically disclaim any implied warranties or merchantability or fitness for any particular purpose.
Information in this publication is subject to change without notice and does not represent a
commitment on the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements on this document. Send your comments
by using the contact form: www.embeddedartists.com/contact.

Trademarks

All brand and product names mentioned herein are trademarks, services marks, registered
trademarks, or registered service marks of their respective owners and should be treated as such.

Copyright 2017 © Embedded Artists AB RevA

http://www.embeddedartists.com/

Developing with Qt5 on iMX Developer’s Kits Page 3

Table of Contents

1 Document Revision HiStOryccccccceeeeiiiieeeeeeennns 4
2 INtrodUCtioN ..cccvvviiiiiiiiiiieeeeeee e 5
2.1 CONVENTIONS .oiiiiiiiiiiieeiie et 5
3 Overview of Qt......oviiiiiiiiiieece e, 6
3.l LICEBNSES it 6
3.2 USEr iNerfaCesvviiiiiiiiiiee et 6
3.2 1 QUWIQELS. ..t 6
B.2.2 QUQUICK vttt 6
3.2.3 QUWEDENQINE ...ttt 6
3.3 QUESSENtialS...ccccoviiiiiiiiii 6
4 Qton iMX Developer's Kitsccccccceevennnnnne. 8
A1 YOCTO IMAYEeeeiiiiiiie ettt 8
N O | V=T £ Lo] o PRSPPI 8
4.3 SUPPOrted MOUUIES.......uuviiiiiiiiiiiiiiiiiiiiiaie e 8
B30 QE QUICK .ot 9
5 Setup QCreatorccoevviii i 10
5.1 Install toolChainoooiiiiii 10
5.2 Install Qt Creator ..o 10
5.3 Configure Qt Creator.......coouiiiiiiiieeiiiie et 13
5.3.1 CoNNECHON t0 tArgetevieiiiiiiiiiieeee e 16
54 Runontarget.......cccooooiiii 18

Copyright 2017 © Embedded Artists AB RevA

Developing with Qt5 on iMX Developer’s Kits Page 4

1 Document Revision History

Revision Date Description
A 2017-01-02 | First release

Copyright 2017 © Embedded Artists AB RevA

Developing with Qt5 on iMX Developer’s Kits Page 5

2 Introduction

Qt is a feature rich and cross-platform application framework developed by the Qt Company. Many
associate Qt with GUI development, but it is possible to do much more than just the GUI using the Qt
framework.

This document provides an overview of Qt and step-by-step instructions for setting up Qt Creator - the
development environment for Qt. This is not a complete course in application development using the
Qt framework. For this purpose please visit doc.qt.io.

Additional documentation you might need:
o The Getting Started document for the board you are using.

e The Working with Yocto document

2.1 Conventions

A number of conventions have been used throughout to help the reader better understand the content
of the document.

Constant width text —is used for file system paths and command, utility and tool names.

$ This field illustrates user input in a terminal running on the
development workstation, i.e., on the workstation where you edit,
configure and build Linux

This field illustrates user input on the target hardware, i.e.,
input given to the terminal attached to the COM Board

This field is used to illustrate example code or excerpt from a
document.

This field is used to highlight important information

Copyright 2017 © Embedded Artists AB RevA

https://doc.qt.io/

Developing with Qt5 on iMX Developer’s Kits Page 6

3 Overview of Qt

Qt is an application framework written in C++ and supported by many platforms such as Linux,
Windows, and OS X. The application framework is mainly developed by the Qt Company, but other
companies and individuals are also involved.

3.1 Licenses

Qt is available under both commercial licenses and open source licenses. The open source licenses
are either GPL or LGPL3 depending on which part of Qt you are looking at. Most of the core libraries
are under GPL while most of the APIs are LGPL3.

Please note that some modules and functionality is only available when using the commercial license.

More information about Qt licensing can be found at www.qt.io/faq/

3.2 User interfaces

Qt offers several ways of developing a user interface; Qt Widgets, Qt Quick, and Qt WebEngine. A
short description of these technologies is available below, but for a more in-depth description and
comparison please visit: doc.qt.io/qt-5/topics-ui.html.

3.2.1 Qt Widgets

The user interface is developed using the C++ programming language often in combination with the
graphical tool Qt Designer. Qt Widgets is often used to create classic desktop-style user interfaces
with a native look and feel. A native look and feel means that the GUI looks as it normally does on the
platform, for example, as normal Windows applications when developing on a Windows platform.

Qt Widgets has not been designed to benefit from a Graphical Processing Unit (GPU) since it is using
a raster paint engine (QPainter) when drawing its graphical elements.

3.2.2 Qt Quick

Qt Quick is described as a module you can use to develop fluid and dynamic user interfaces with
animations and effects - the type of GUI you usually see in mobile devices.

With Qt Quick the user interface is developed using QML — a declarative language with a JSON-like
syntax. The whole application can be written in QML, but normally only the GUI is written in QML and
the other parts of the application is written in C++. As with Qt Widgets there is tool support in the form
of Qt Quick Designer that helps you develop the GUI.

Qt Quick has been designed to be hardware accelerated and has because of this a dependency
towards OpenGL.

NOTE: Not all of Embedded Artists COM boards support QtQuick when using the open source
version of Qt. See section 4.3.1 for more information.

3.2.3 Qt WebEngine

Qtincludes a web engine that lets you include web content into the application. This means that the
entire user interface or parts of it can be developed using web technologies such as HTML, CSS, and
JavaScript. For more information about developing with web content visit the link below.

doc.qt.io/gt-5/topics-web-content.html

3.3 QtEssentials

The foundation of Qt is called Qt Essentials and includes the user interface functionality described
above, but also a lot more. The table below contains a short description of some of the modules in Qt
essentials. For a more complete list and description visit the link below.

doc.qt.io/at-5/gtmodules.html

Copyright 2017 © Embedded Artists AB RevA

http://www.qt.io/faq/
https://doc.qt.io/qt-5/topics-ui.html
http://doc.qt.io/qt-5/topics-web-content.html
https://doc.qt.io/qt-5/qtmodules.html

Developing with Qt5 on iMX Developer’s Kits Page 7

Module Description

Non-graphical classes used by other modules. This module, for example,
Qt Core contains the object communication functionality called “signals and slots”. It also
defines the object model and property system.

Audio, video, radio, and camera functionality. The exact support depends on the

SlTETE underlying platform.
Qt Network This module contains classes that provide networking (TCP/IP) functionality.
Qt SQL Database functionality is offered through this module.
Qt Test This module provides classes for unit testing.

In addition to all the modules in Qt essentials there are also many add-on modules. Please visit the
link above the table for more details.

Copyright 2017 © Embedded Artists AB RevA

Developing with Qt5 on iMX Developer’s Kits Page 8

4 Qt on iMX Developer’s Kits

41 Yocto image

The Yocto image that adds Qt5 support to the target is fsl-image-qt5. See the document “Working with
Yocto to build Linux” for more information about Yocto and how to build and deploy images.

Before building this image we need to add support for an SFTP server. The SFTP server allows us to
download a Qt application to the target from within Qt Creator.

Open the file <build dir>/conf/local.conf

§$ nano conf/local.conf

Locate the IMAGE_INSTALL_append variable and add the following two lines:

openssh-sftp \
openssh-sftp-server \

Now you can build the Qt5 image and an SFTP server will be included.

$ bitbake fsl-image-qgt5

4.2 Qtversion

Embedded Artists provides two Yocto branches (BSP versions). These are mentioned in the document
“Working with Yocto to build Linux”. Itis Qt version 5.5.0 that is used in the 3.14.52 branch and
version 5.5.1 that is used in the 4.1.15 branch.

There is a Qt layer called meta-qt5 in Yocto and the version that is used can be found in meta-
gt5/recipes-qt/qt5/gt5-git.inc

4.3 Supported modules

The table below lists Qt modules and if they are built for a COM board, or not. Even though a module
is available, all functionality hasn’t been tested by Embedded Artists. The table has been compiled by
listing the Qt libraries available in the root file system by running the command below.

$ cd /usr/lib
$ 11 | grep Ot

The second column (IMX6Q/D6DL/SX) in the table reflects the Qt support for iMX6 Quad, iIMX6 Dual,
iMX6 DualLite and iMX6 SoloX. The third column (iMX7D/iMX6UL) reflects the Qt support for iIMX7
Dual COM, iMX7 Dual uCOM, and iMX6 UltraLite.

Module iMX6Q/D/DL/SX iMX7D/iMX6UL
Qt3D X
Qt Bluetooth X
Qt Concurrent X
Qt Core X
Qt D-Bus X

Copyright 2017 © Embedded Artists AB RevA

Developing with Qt5 on iMX Developer’s Kits Page 9

Qt GUI
Qt Location
Qt Multimedia
Qt Multimedia Widgets
Qt Network
QtNFC
Qt OpenGL
Qt Platform
Qt Positioning
Qt Print Support
Qt QML
Qt Quick
Qt Quick Widgets
Qt Script
Qt Sensors
Qt Serial Port
Qt sQL
QtSVG
Qt Test
Qt WebChannel
Qt WebSockets
Qt Widgets
Qt XML
Qt XML Patterns

X X

4.3.1 Qt Quick

As mentioned in section 3.2.2 Qt Quick is a module that lets you create nice looking user interfaces.
Because of this many want to use Qt Quick. This module however depends on OpenGL and a
graphical processing unit (GPU) and is therefore not supported on all Embedded Artists COM boards.
It is not supported on iMX6 UltraLite COM, iMX7 Dual COM, and iMX7 Dual uCOM because the
processors on these boards don’t have a GPU.

Even though a board lacks a GPU it could be possible to use Qt Quick with a software rendered
graphical engine. The performance would however be worse than on board that has a GPU. NXP has
therefore decided not to include Qt Quick in the Qt recipes in Yocto.

If you would like to use Qt Quick on boards without a GPU you should have a look at Qt's module “Qt
Quick 2D Renderer*. This is an alternative renderer for Qt Quick that uses the raster paint engine
instead of OpenGL. Please note that this module is only available in the commercial versions of Qt. For
more information visit the link below.

doc.qt.io/QtQuick2DRenderer/

Copyright 2017 © Embedded Artists AB RevA

http://doc.qt.io/QtQuick2DRenderer/

Developing with Qt5 on iMX Developer’s Kits Page 10

5 Setup QtCreator

The instructions in this section have been tested on a virtual machine running lubuntu 16.04. The
document “Working with Yocto to build Linux” has a chapter that explains how to create a VMware
based virtual machine running lubuntu.

If you are an experienced Linux user it shouldn’t be a problem getting Qt Creator to run on another
Linux distribution with the instructions below as a guideline.
5.1 Install toolchain

To be able to build Qt applications that will run on Embedded Artists iMX based COM boards a
toolchain is needed. The toolchain contains cross compiler, linker, Qt headers and needed libraries.

The toolchain can be built in Yocto using the meta-toolchain-qt5 image. See the document “Working
with Yocto to build Linux” for more information about Yocto.

§$ bitbake meta-toolchain-gt5h

The build will result in a file located at <build directory>/tmp/deploy/sdk. The exact
name of the file depends on several parameters, but in our example it is called:

fsl-imx-fb-glibc-x86 64-meta-toolchain-gt5-cortexa9hf-vfp-neon-
toolchain-4.1.15-1.2.0.sh

Part of file name Description
fsl-imx-fb The distribution (DISTRO parameter) used when initializing the build.
%86 64 Architecture of the host computer. In this example a 64-bit Intel x86 platform

4.1.15-1.2.0 BSP version

It is recommended to build this toolchain on your host computer where you will do the Qt development,
but if you have a 64-bit Intel x86 based host computer you can download a pre-built version from
imx.embeddedartsits.com.

$ wget imx.embeddedartists.com/common/fsl-imx-fb-glibc-x86 64-
meta-toolchain-gqt5-cortexa%9hf-vfp-neon-toolchain-4.1.15-1.2.0.sh

Install the toolchain. It is recommended to use the default settings (such as installation path) when
installing.

$ sudo ./fsl-imx-fb-glibc-x86 64-meta-toolchain-gt5-cortexa9hf-
vfp-neon-toolchain-4.1.15-1.2.0.sh

5.2 Install Qt Creator

Offline installers of Qt Creator are available at: download.qt.io/official releases/qt/5.7/5.7.0/. The
instructions below are based on instructions from wiki.gt.io/Install Qt 5 on Ubuntu.

Download installer

§$ wget download.gt.io/official releases/qt/5.7/5.7.0/qgt-
§opensource—linux—x64—5.7.0.run

Copyright 2017 © Embedded Artists AB RevA

http://imx.embeddedartists.com/common/fsl-imx-fb-glibc-x86_64-meta-toolchain-qt5-cortexa9hf-vfp-neon-toolchain-4.1.15-1.2.0.sh
http://download.qt.io/official_releases/qt/5.7/5.7.0/
https://wiki.qt.io/Install_Qt_5_on_Ubuntu

Developing with Qt5 on iMX Developer’s Kits Page 11

Adjust permission

§$ chmod +x gt-opensource-linux-x64-5.7.0.run

Run installer

$./gt-opensource-linux-x64-5.7.0.run

In general the default settings have been used when installing Qt Creator. Please note that a Qt
account is required when installing Qt Creator as shown in Figure 1. Choose an existing account or
create a new account. There is no cost associated with a Qt account.

3 Qt 5.7.0 Setup - + X

Qt Account - Your unified login to everything Qt

Please log in to Qt Account
Login [

Forgot password?
Meed a Qt Account?
Sign-up

service terms

Settings < Back Next Cancel

Figure 1 -Log in to a Qt account
The default components to install were selected as shown in Figure 2. If you plan to choose other

components select these at this step. Please note that some components may only be available when
using a commercial version of Qt.

Copyright 2017 © Embedded Artists AB RevA

Developing with Qt5 on iMX Developer’s Kits Page 12

[0t) Qt 5.7.0 Setup - + X

Select Components
Please select the components you want to install.

[0! 5.7.0
v @ Qt5.7) This component will occupy
v| Desktop gec 64-bit approximately 1.01 GiB on

-3%%’;:;5 your hard disk drive.

Qt Data Visualization
¥ Qt Purchasing
Qt Quick 2D Renderer
Ot Virtual Keyboard
Ot WebEngine
Ot SerialBus (TP}
Qt SCXML (TP)
Qt Gamepad (TP)
Ot Script (Deprecated)
ols

Slelelelals

| Select All || Deselect All|

| =Back |’ Next =]| Cancel |

Figure 2 - Components to install

When Qt Creator has been installed select to launch it and click the “Finish” button and then continue
to the next section of this document.

Ot Qt 5.7.0 Setup - + x

Completing the Qt 5.7.0 Wizard

Click Finish to exit the Qt 5.7.0 Wizard.
| Launch Qt Creator

Figure 3 - Finish install of QtCreator

Copyright 2017 © Embedded Artists AB RevA

Developing with Qt5 on iMX Developer’s Kits Page 13

5.3 Configure Qt Creator

Qt Qreator needs to be configured to use the toolchain that was previously installed. Begin by opening
the Options dialog: Tools = Options.

(o] Qt Creator -+ x
File Edit Build Debug Analyze QGBIE] Window Help

C++ »

Projects oMUs ’:| ‘ G Open Project ‘
Code Pasting 3

= Examples Recent Projects
Tutorials W TestWidget
External 3 . y
= ~TestWidgetTestWidget.pro

‘,' Diff...
1 " W TestQuick

Sl - TestQuick/TestGuick pro
New to Qt?

Learn how to develop
your own applications and
explore Qt Creator.

Get Started Now

Welcome

e

A otAccount
B oniline Community

)\ Blegs

@ Usercuide

P. Type to locate (Ctrl+K) 1 Issues 2 Search Re.. 3 Applicatic... 4 Compile O... 5 Debugger... #%

Figure 4 - Options under Tools menu

Select “Build & Run” in the left menu and then the “Compilers” tab. Click the “Add” button and then
GCC as shown in Figure 5 below.

Copyright 2017 © Embedded Artists AB RevA

Developing with Qt5 on iMX Developer’s Kits Page 14

ot] Options - +

|Filter | Build & Run

@Envimnmgnt “* | General Kits | QtVersions | Compilers ‘ Debuggers = CMake

Text Editor Name Type Add -
w Auto-detected

g FakeVim GCC (x86 64bit in fusr/bin) GCC Linux ICC
GCC (x86 32bit in fusr/bin) GCC

@ Help ~ Manual
{} et 2:?5:3m
41 Ot Quick

a Debugger

j Designer

B8 Analyzer
Version Control

q Android

Qcc

sarc QNX

' Devices

Code Pasting

| Apply || cancel || OK

Figure 5 - Add new compiler

Choose a name for the compiler and then select the path to the compiler. In this example the compiler
is located at:

/opt/fsl-imx-fb/4.1.15-1.2.0/sysroots/x86 64-pokysdk-
linux/usr/bin/arm-poky-linux-gnueabi/arm-poky-linux-gnueabi-g++

(o} Options - + x
[fiter | Build & Run
@ Environment “!| General Kits = QtVersions | Compilers = Debuggers CMake
Text Editor 'Ear:itu—detetted e Ladd
I Fovm SECtat et in i et [Cgene |
@ Help - Mal GCC
{3 c++
4:] Qt Quick
a Debugger
X Designer
Mame: [IMXQtS |
[EH Analyzer) . . - . : n
. Compiler path: -pokysdk-linux/usr/binjarm-poky-linux-gnueabifarm-poky-linux-gnueabi-g++ | | Browse... |
Version Control Platform codegen flags: | |
153/ Android Platform linker flags: | |
s QNX ABI: | armdlinux-g ~ |
' Devices
Code Pasting
| Apply | Cancel || oK |

Figure 6 - Compilers tab
Go to the “Debuggers” tab as shown in Figure 7 and click the “Add” button. Select the path to the GDB
debugger. In this example it is located at:

/opt/fsl-imx-fb/4.1.15-1.2.0/sysroots/x86 64-pokysdk-
linux/usr/bin/arm-poky-linux-gnueabi/arm-poky-linux-gnueabi-gdb

Copyright 2017 © Embedded Artists AB RevA

Developing with Qt5 on iMX Developer’s Kits Page 15

@ Options - + x
Fiter | Build & Run
@ Environment | | General | Kits = Qt Versions = Compilers = Debuggers | CMake
Text Editor Location aad |
g FakeVim | clone |
fopt/fsl-imx-fbf4.1.15-1.2.0/sysroots/x86 64-pokysdk-linuxfusr/bin/arm-poky-linux-gnueabifarm-poky-linux-gnueabi-gd
| Remove |
@ Help
{} o+
/\ﬂ Ot Quick
a Debugger
I Designer 4 3
(B8 Analyzer
N Name: |iMX GDB |
Version Control
& android Path: jroots/x86_64-pokysdk-linux/usr/bin/arm-poky-linux-gnueabi/arm-poky-linux-gnueabi-gdb| | Browse... |
ndroi
Type: | |
sa QNX
aBls: | |
I Devices Version: | ‘
Code Pasting
| apply || cancel |[oK

Figure 7 - Debuggers tab
Go to the “Qt Versions” tab as shown in Figure 8 and click the “Add” button. Select the path to gmake.
In this example gmake is located at:

/opt/fsl-imx-fb/4.1.15-1.2.0/sysroots/x86 64-pokysdk-
linux/usr/bin/qt5/gmake

B Options - + x

[Filter | Build & Run

@ Environment | | General = Kits =~ QtVersions | Compilers Debuggers = CMake

Text Editor Name v qmake Location Type | aAdd.. |
¥ Auto-detected —

g EakeVim Qt 5.7.0 GCC 64bit /homefandre/tmp_Qt5.7.0/5.7/gcc_64/bin/gmake | Remove |
¥ Manual _

@ Help 5.1 (Jopt/fsl-imx-fb/4.1.15-1.2.0/sysroots/x86_64-pokysdk-linux/usr/bin/gt5/gma

{3} c++

] ot Quick

@ Debugger
Designer

[Analyzer
Version Control
i Android

Version name: |Qt % {Qt:Version} (gts) \
=arx QNX

gqmake location: jopt/fsl-imx-fbf4.1.15-1.2.0/sysroots/x86_64-pokysdk-linuxjusr/bin/qt5/qmake | Browse... |

. Devices

Code Pasti Qt version 5.5.1 for Embedded Linux
[§| CodePasting | _

Details

| apply | cencel |[oK

Figure 8 - Qt Versions tab

Go to the “Kits” tab and add a new kit by clicking the “Add” button. Choose a name for the kit and set

“Device type”, “Sysroot”, “Compiler”, “Debugger”, and “Qt version”. Figure 9 shows the settings used
for our setup.

“Sysroot” is in this example set to:

Jopt/fsl-imx-fb/4.1.15-1.2.0/sysroots/cortexa9hf-vfp-neon-poky-
linux-gnueabi

Copyright 2017 © Embedded Artists AB RevA

Developing with Qt5 on iMX Developer’s Kits Page 16

oy} Options - + x
Filter Build & Run
@ Environment || General | Kits | QtVersions | Compilers | Debuggers | CMake
Text Editor Name Add
¥ Auto-detected :
@ Eakevim Desktop Ot 5.7.0 GCC 64bit (default) Clane
¥ Manual
Remove
@ Help
Make Default
{7} c++
y Name: iMX
"-Cl Ot Quick =

File system name:

0' Build & Run Device type: Generic Linux Device -

@ Debugger Device: iMX (default for Generic Linux) ~ || Manage...
1 Desi Sysroot: Jjopt/fsl-imx-fb/4.1.15-1.2.0/sysroots/cortexadhf-vfp-nean-poky-linux-gnueabi Browse...
esigner
9 Compiler: iMXQt5 ~ || Manage...
[Em Analyzer Environment: No changes to apply. Change...
Version Control Debugger: iIMX GDB ~ || Manage...
Qt version: Qt 5.5.1 (gt5) ~ || Manage...
i) Android
Ot mkspec:
saoc QINX CMake Tool: Manage...
n Devices CMake Generator: -
- CMake Configuration CMAKE_CXX_COMPILER:STRING="%{Compiler:Executable}; QT_QMAKE_EXECUTABLE:STRIN... | Change...
Code Pasting

Figure 9 - Kits tab

5.3.1 Connection to target

Itis possible to start/stop an application on the device using an SSH connection. To configure this
connection you first have to retrieve some information from the target. The instructions below assume
that you have a terminal application connected to the target.

Get IP address.

ifconfig

ethO Link encap:Ethernet HWaddr CA:71:64:BD:1A:20
inet addr:192.168.1.222 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80:

Allow root login to SSH server:

By default SSH might not allow the user “root” to login. By following these instructions “root” will be
permitted to login through an SSH connection. It is not recommended to use on a final application, but
during development it can be permitted.

1. Open the configuration file for the SSH server

é# nano /etc/ssh/sshd config

2. Find the line that starts with #PermitRootLogin and remove the ‘#' (hash) character. If you
cannot find this line just add it to the file (without the hash)

PermitRootLogin yes

3. Save the file and exit the editor (in nano itis Ctrl-X followed by Y and Enter).
4. Restart the SSH server

é# /etc/init.d/sshd restart

Copyright 2017 © Embedded Artists AB RevA

Developing with Qt5 on iMX Developer’s Kits Page 17

Setup a Device in Qt Creator

Go back to Qt Creator, Tools = Options and then select “Devices” in the left menu as shown in Figure

10.
o] Options - + X
Devices
[i] Environment | Devices |
Text Editor Device: | Local PC (default for Desktop) - Add...
g FakeVim General
@ Help Name: |Local PC |
{} C++ Type: DESk_tUFI') - |Show Running Processes...
Auto-detected: Yes (id is "Desktop Device”)
41 Qt Quick Current state: Unknown
[O} Build & Run Type Specific
Q Debugger
1 Designer
Bl Analyzer
Version Control
q Android
=an QNX
Code Pasting
| Apply | Cancel |[oK

Figure 10 - Devices

Click the “Add” button and select “Generic Linux Device as shown in Figure 11.

m Options
|Filter . Devices
Envi t | Devices - - -
@ furonmen @ Device Configura... Wizard Selection - + X
i Device: |Local PC (defau - Add...
Text Editor - |7 Available device types: | | =
g EakeVim General Generic Linux Device
QNX Device
@ Help Name: |Loca |
{} Cit Type: Desk | show Running Processes...
Auto-detected: Yes (j
.{J Qt Quick Current state: Unkn.
[Q)"‘ Build & Run Type Specific
a Debugger
X Designer
[ER Analyzer
Version Control _ -
Concl_|
q Android
sam QNX
Code Pasting
| Apply || Cancel [oK

Figure 11 - Select device type

Give the device a name, enter the IP address, username and password as shown in Figure 12. By
default the password for the user root is pass.

Copyright 2017 © Embedded Artists AB RevA

Developing with Qt5 on iMX Developer’s Kits Page 18

o] New Generic Linux Device Configuration Setup - + X

Connection

-$ Connection The name to identify this configuration: |iMX

The device's host name or IP address: 192.168.1.222

The username to log into the device: root
The authentication type: (@) Password ([) Key
The user's password: ’- |

The file containing the user's private key:

Concel

Figure 12 - IP address and user credentials

Click “Next” and then “Finish” and the connection to the target will be created and tested as shown in
Figure 13.

o] Device Test - + X

Connecting to host...
Checking kernel version...
Linux 4.1.15-1.2.0+gbe76c9f armv7I

Checking if specified ports are available...
All specified ports are available.

Device test finished successfully.

Close

Figure 13 - Testing connection to target

5.4 Run on target

When you have created an application it is possible to configure the project so that the application is
downloaded and executed on the target. In the example below an application named TestWidget has
been created.

Copyright 2017 © Embedded Artists AB RevA

Developing with Qt5 on iMX Developer’s Kits Page 19

First you need to prepare the “.pro” file to list target files and define installation path for the files.
1. Click on the “Edit” button and then the .pro file as shown in Figure 14.

[0t TestWidget.pro - TestWidget - Qt Creator - + X
File Edit Build Debug Analyze Tools Window Help
Projects FT.® H = B Testwidget.pro F| X Line: 1, Col: 1 B+

S -
% TestWidget.pro 2 #
» Headers 3 # Project created by QtCreator 2016-12-14T08:01:21
» [Sources g #
» [7 Forms L R h bbb bbb

7T += core gui

g greaterThan (QT_MAJOR_VERSION, 4): QT += widgets
10
11 TARGET = TestWidget

- 12 target.files = TestWidget
: [3 13 target.path = /

Debug 14 INSTALLS += target

15

16 TEMPLATE = app

17

18

19 SOURCES += main.cppl

20 mainwindow.cpp

:: HEADERS += mainwindow.h

24 FORMS += mainwindow.ui

Open Documents
® TestWidget.pro

[Bl ©. Type to locate (Ctrl+K) 1 Issues 2 Search Results 3 Application 0... 4 Compile Output 5 Debugger Co...

Figure 14 - Editing .pro file

2. Add the information listed below in the .pro file. Change “TestWidget” to the name of your
application. You can also change the path if you want the files to be installed somewhere else
on the target.

target.files = TestWidget
target.path = /
INSTALLS += target

3. Save thefile

Now click on the "Projects” button and then on the "Run” configuration as shown in Figure 15. In the
“Files to deploy” area you should see the path to the application as well as the remote directory.
Without the changes in the .pro file the application path and remote directory wouldn’t be listed.

Copyright 2017 © Embedded Artists AB RevA

Developing with Qt5 on iMX Developer’s Kits

[0t TestWidget.pro - TestWidget - Qt Creator - + X
File Edit Build Debug Analyze Tools Window Help
TestWidget
HH | Editor | CodeStyle | Dependencies | Clang Static Analyzer |
Add Kit -
E Manage Kits... Run
Edit y
b Run Settings
- Deployment
b Method: Deploy to Remote Linux Host Add - Rename...
Debug
/‘,- Files to deploy:
Projects Local File Path Remote Directory

Jhome/andrefbuild-TestWidget-iMX-Debug/TestWidget /

124

Help

Check for free disk space Details «
TestWidget Upload files via SFTP Details «
I;I » Add Deploy Step -
Debug
’ Run
Run configuration: | TestWidget (on Remote Device] - Add - Rename...

P. Type to locate (Ctrl+K) 1 Issues 2 Search Results 3 Application O0... 4 Compile Qutput 5 Debugger Co...

Figure 15 - Run configuration for the project

To be able to start the Qt application on the target some arguments must be given. The “platform”
argument specifies which platform plugin to use. For Embedded Artists COM boards with a GPU and
with a framebuffer as backend you choose eg1fs. For the COM boards without a GPU choose
1inuxfb as platform. The “plugin” argument specifies the path to the touch device that is used (if you
have a touch screen).

o] TestWidget.pro - TestWidget - Qt Creator - + X
File Edit Build Debug Analyze Tools Window Help
Testwidget
EEE GUGESGOLSY | Editor | CodeStyle | Dependencies | Clang Static Analyzer |
Welcome
Add Kit -
E Manage Kits... Run
Edit 2
Run
Run configuration: TestWidget (on Remote Device) - Add - Rename...
-
LS
Debug
Executable an host: Jhome/andre/build-TestWidget-iMX-Debug/TestWidget
/‘ Executable on device: JTestWidget
= Alternate executable on device: Use this command instead
Arguments: -platform eglfs -plugin evdevtouch:/dev/input/evento
Working directory: <default>

Run Environment

Use System Environment Details =

Debugger Settings

¥| Enable C++

£ Enable QML What are the prerequisites?

L. Type to locate (Ctrl+K) ssues 2 Search Results 3 Application O... 4 Compile Output 5 Debugger Co

Figure 16 - Application arguments

Copyright 2017 © Embedded Artists AB RevA

Developing with Qt5 on iMX Developer’s Kits Page 21

It is now be possible to run an application on the target by clicking on the “Play” button. It is also
possible to download and debug an application by clicking on the “Debug” button.

For further information about Qt application development please visit. doc.qt.io/.

Copyright 2017 © Embedded Artists AB RevA

https://doc.qt.io/

	1 Document Revision History
	2 Introduction
	2.1 Conventions

	3 Overview of Qt
	3.1 Licenses
	3.2 User interfaces
	3.2.1 Qt Widgets
	3.2.2 Qt Quick
	3.2.3 Qt WebEngine

	3.3 Qt Essentials

	4 Qt on iMX Developer’s Kits
	4.1 Yocto image
	4.2 Qt version
	4.3 Supported modules
	4.3.1 Qt Quick

	5 Setup QtCreator
	5.1 Install toolchain
	5.2 Install Qt Creator
	5.3 Configure Qt Creator
	5.3.1 Connection to target

	5.4 Run on target

