

 Developing with Python on iMX Developer’s Kits
Copyright 2016 © Embedded Artists AB

Developing with Python

on iMX Developer’s Kits

Developing with Python on iMX Developer’s Kits Page 2

Copyright 2016 © Embedded Artists AB Rev A

Embedded Artists AB
Davidshallsgatan 16
SE-211 45 Malmö
Sweden

http://www.EmbeddedArtists.com

Copyright 2016 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of
Embedded Artists AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and
specifically disclaim any implied warranties or merchantability or fitness for any particular purpose.
Information in this publication is subject to change without notice and does not represent a
commitment on the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements on this document. Send your comments
by using the contact form: www.embeddedartists.com/contact.

Trademarks

All brand and product names mentioned herein are trademarks, services marks, registered
trademarks, or registered service marks of their respective owners and should be treated as such.

http://www.embeddedartists.com/

Developing with Python on iMX Developer’s Kits Page 3

Copyright 2016 © Embedded Artists AB Rev A

Table of Contents
1 Document Revision History 4

2 Introduction ... 5

2.1 Conventions .. 5

3 Quick Start ... 6

3.1 Hello World ... 6

3.2 File Example ... 6

3.3 DisplayHelper ... 7

4 Target Requirements .. 9

4.1 Adding Packages Using Yocto .. 9

4.2 Adding Packages Using PIP .. 9

5 Develop .. 11

5.1 Development and Debugging on a PC 11

5.2 Remote Debugging Using Eclipse .. 11

5.2.1 Prepare Target .. 11

5.2.2 Prepare PC .. 12

5.2.3 Setup a Connection to Target .. 17

5.2.4 Create a Project .. 20

5.2.5 Debug .. 20

5.2.6 Breakpoints ... 21

5.2.7 Exiting Eclipse ... 22

5.2.8 Remote Shell ... 23

5.2.9 Target Changed IP Address .. 23

6 Further Expansion .. 25

7 Troubleshooting .. 26

7.1 Cannot get an SSH connection to the target 26

7.1.1 Solve “Access denied” problem ... 26

Developing with Python on iMX Developer’s Kits Page 4

Copyright 2016 © Embedded Artists AB Rev A

1 Document Revision History
Revision Date Description

A 2016-12-07 First release

Developing with Python on iMX Developer’s Kits Page 5

Copyright 2016 © Embedded Artists AB Rev A

2 Introduction
Python is a widely used high-level interpreted programming language that has been around since
1991. Python interpreters are available on many operating systems including Linux, Windows and Mac
OS.

This document provides you with step-by-step instructions to start writing Python scripts for the
Embedded Artists iMX based COM boards. It is assumed that the reader is familiar with Python as this
is no course but rather a getting started guide.

The instructions have been tested on PCs running both Windows and Ubuntu. As Eclipse is a multi-
platform IDE the experience is very similar in both operating systems. Differences have been noted in
the documentation when it impacted the outcome (e.g. handling of breakpoints in section 5.2.6).

Additional documentation you might need is.

 The Getting Started document for the board you are using.

 The Working with Yocto document

2.1 Conventions

A number of conventions have been used throughout to help the reader better understand the content
of the document.

Constant width text – is used for file system paths and command, utility and tool names.

$ This field illustrates user input in a terminal running on the

development workstation, i.e., on the workstation where you edit,

configure and build Linux

This field illustrates user input on the target hardware, i.e.,

input given to the terminal attached to the COM Board

TThhiiss ffiieelldd iiss uusseedd ttoo iilllluussttrraattee eexxaammppllee ccooddee oorr eexxcceerrpptt ffrroomm aa

ddooccuummeenntt..

This field is used to highlight important information

Developing with Python on iMX Developer’s Kits Page 6

Copyright 2016 © Embedded Artists AB Rev A

3 Quick Start
All pre-built file system images for the Embedded Artists iMX based COM boards come with a python
interpreter already installed.

3.1 Hello World

The very first example in most programming languages is a program that writes “Hello World” on the
terminal. In python this can be done with very little code. Start by booting into Linux and then open a
new file with an editor:

 # nano hello.py

Copy and paste the following into the editor:

##!!//uussrr//bbiinn//ppyytthhoonn

pprriinntt ""HHeelllloo WWoorrlldd""

Save the file and exit the editor (in nano it is Ctrl-X followed by Y and Enter).

Try the script with:

python hello.py

Hello World

3.2 File Example

This example shows how to pass arguments to a script and some very basic file handling. The script

does the same as the system command wc, that is it counts the number of lines, words, and bytes in

the specified file.

Open an editor:

nano fileinfo.py

Copy and paste the following into the editor:

##!!//uussrr//bbiinn//ppyytthhoonn

iimmppoorrtt ssyyss

iimmppoorrtt ooss

ddeeff pprriinnttUUssaaggee(())::

 pprriinntt ""UUssaaggee::""

 pprriinntt "" ppyytthhoonn"",, ssyyss..aarrggvv[[00]],, ""<<ffiillee>>""

 eexxiitt((00))

ddeeff ppaarrssee((ffnnaammee))::

 lliinneeCCoouunntt == 00

 wwoorrddCCoouunntt == 00

 bbyytteeCCoouunntt == ooss..ppaatthh..ggeettssiizzee((ffnnaammee))

 wwiitthh ooppeenn((ffnnaammee,, ''rr'')) aass ff::

 lliinneess == ff..rreeaaddlliinneess(())

 lliinneeCCoouunntt == lleenn((lliinneess))

 ffoorr lliinnee iinn lliinneess::

 wwoorrddCCoouunntt ++== lleenn((lliinnee..ssttrriipp(())..sspplliitt(())))

Developing with Python on iMX Developer’s Kits Page 7

Copyright 2016 © Embedded Artists AB Rev A

 rreettuurrnn ((lliinneeCCoouunntt,, wwoorrddCCoouunntt,, bbyytteeCCoouunntt))

iiff ____nnaammee____ ==== ""____mmaaiinn____""::

 iiff lleenn((ssyyss..aarrggvv)) !!== 22::

 pprriinnttUUssaaggee(())

 ffnnaammee == ssyyss..aarrggvv[[11]]

 iiff nnoott ooss..ppaatthh..eexxiissttss((ffnnaammee))::

 pprriinntt ""FFiillee ddooeess nnoott eexxiisstt::"",, ffnnaammee

 pprriinntt

 pprriinnttUUssaaggee(())

 ((lliinneess,,wwoorrddss,,bbyytteess)) == ppaarrssee((ffnnaammee))

 pprriinntt "" "" ** lleenn((ffnnaammee)),, "" LLiinneess WWoorrddss BByytteess""

 pprriinntt ""%%ss %%55dd %%55dd %%55dd"" %% ((ffnnaammee,, lliinneess,, wwoorrddss,, bbyytteess))

Run the script with the /var/log/messages file as input:

 # python fileinfo.py /var/log/messages

If there is any problem with the copy-pasting then the script can be downloaded like this instead:

wget http://imx.embeddedartists.com/python/fileinfo.py

3.3 DisplayHelper

This is a script that will:

 Extract information about configured displays (actually the frame buffers)

 Draw a pattern on each frame buffer

 Cycle through the backlight settings for each backlight controller to fade the display in and out
three times

To download the example (it is too large to include in this document):

wget http://imx.embeddedartists.com/python/DisplayHelper.py

Run the script with:

python DisplayHelper.py

 Found framebuffers: ['/dev/fb0', '/dev/fb1']

 Detected /dev/fb0 - available

 Detected /dev/fb1 - available

 Testing:

 Device: /dev/fb0

 Size: 800 x 480

 Type: RGB 888

 Byte/Pixel: 4

 Blank: /sys/devices/soc0/fb.20/graphics/fb0/blank

 Unblanking

 Drawing 4bpp gradient, h = 120

Developing with Python on iMX Developer’s Kits Page 8

Copyright 2016 © Embedded Artists AB Rev A

 Testing:

 Device: /dev/fb1

 Size: 240 x 320

 Type: RGB 888

 Byte/Pixel: 4

 Blank: /sys/devices/soc0/fb.20/graphics/fb1/blank

 Unblanking

 Drawing 4bpp gradient, h = 80

 Found backlights:

 path: /sys/class/backlight/backlight2.22

 actual_brightness: 7

 bl_power: 0

 brightness: 7

 max_brightness: 7

 type: raw

 uevent: bin(0)

 Waiting 5 seconds before backlight tests...

 Starting backlight manipulation..

 Adjusting brightness for backlight2.22

 loop= 0 lvl= 0

 loop= 0 lvl= 1

 loop= 0 lvl= 2

 ...

Developing with Python on iMX Developer’s Kits Page 9

Copyright 2016 © Embedded Artists AB Rev A

4 Target Requirements
All pre-built file system images for the Embedded Artists iMX based COM boards come with a Python
interpreter already installed. Additional packages can be added either using Yocto when setting up the
file system or in runtime using the pip package manager.

4.1 Adding Packages Using Yocto

At the time this document was written the following packages could be added using Yocto:

ppyytthhoonn--aassyynncc ppyytthhoonn--iimmaaggiinngg ppyytthhoonn--ppyyppaarrtteedd

ppyytthhoonn--aauuttoobbaahhnn ppyytthhoonn--jjiinnjjaa22 ppyytthhoonn--ppyyqqtt

ppyytthhoonn--bbaacckkppoorrttss--ssssll ppyytthhoonn--llddaapp ppyytthhoonn--ppyyrreexx

ppyytthhoonn--cceerrttiiffii ppyytthhoonn--llxxmmll ppyytthhoonn--ppyysseerriiaall

ppyytthhoonn--ccffffii ppyytthhoonn--mm22ccrryyppttoo ppyytthhoonn--ppyyttzz

ppyytthhoonn--cchheeeettaahh ppyytthhoonn--mmaakkoo ppyytthhoonn--ppyyuuddeevv

ppyytthhoonn--cclloouuddeeeebbuuss ppyytthhoonn--mmaarrkkuuppssaaffee ppyytthhoonn--ppyyuussbb

ppyytthhoonn--ccmmdd22 ppyytthhoonn--mmaattpplloottlliibb ppyytthhoonn--ppyyyyaammll

ppyytthhoonn--ccyytthhoonn ppyytthhoonn--mmccccaabbee ppyytthhoonn--ppyyzzmmqq

ppyytthhoonn--ddaatteeuuttiill ppyytthhoonn--mmoocckk ppyytthhoonn--rreeqquueessttss

ppyytthhoonn--ddbbuuss ppyytthhoonn--mmssggppaacckk ppyytthhoonn--ssccoonnss

ppyytthhoonn--ddbbuussmmoocckk ppyytthhoonn--nnoossee ppyytthhoonn--ssiimmpplleejjssoonn

ppyytthhoonn--ddeeccoorraattoorr ppyytthhoonn--nnuummeerriicc ppyytthhoonn--ssiixx

ppyytthhoonn--ddiissttrriibbuuttee ppyytthhoonn--nnuummppyy ppyytthhoonn--sslliipp--ddbbuuss

ppyytthhoonn--ddjjaannggoo ppyytthhoonn--ppeepp88 ppyytthhoonn--ssmmaarrttppmm

ppyytthhoonn--ddjjaannggoo--ssoouutthh ppyytthhoonn--ppeexxppeecctt ppyytthhoonn--ssmmbbuuss

ppyytthhoonn--ddooccuuttiillss ppyytthhoonn--ppiipp ppyytthhoonn--ssmmmmaapp

ppyytthhoonn--eennuumm3344 ppyytthhoonn--pprreettttyyttaabbllee ppyytthhoonn--ssnnaakkeeffoooodd

ppyytthhoonn--eeppyyddoocc ppyytthhoonn--ppssuuttiill ppyytthhoonn--ssqqllaallcchheemmyy

ppyytthhoonn--ffeeeeddppaarrsseerr ppyytthhoonn--ppyyaallssaaaauuddiioo ppyytthhoonn--ttoorrnnaaddoo

ppyytthhoonn--fflluuffll--eennuumm ppyytthhoonn--ppyyccaaiirroo ppyytthhoonn--ttwwiisstteedd

ppyytthhoonn--ffuuttuurreess ppyytthhoonn--ppyyccppaarrsseerr ppyytthhoonn--uujjssoonn

ppyytthhoonn--ggddaattaa ppyytthhoonn--ppyyccuurrll ppyytthhoonn--uurrlllliibb33

ppyytthhoonn--ggeevveenntt ppyytthhoonn--ppyyffllaakkeess ppyytthhoonn--vvoobbjjeecctt

ppyytthhoonn--ggiitt ppyytthhoonn--ppyyggoobbjjeecctt ppyytthhoonn--wweebbddaavv

ppyytthhoonn--ggiittddbb ppyytthhoonn--ppyyggttkk ppyytthhoonn--zzooppeeiinntteerrffaaccee

ppyytthhoonn--ggrreeeennlleett ppyytthhoonn--ppyyooppeennssssll

ppyytthhoonn--ggsstt ppyytthhoonn--ppyyppaarrssiinngg

The instructions on how to find available packages as well as how to include them in the image build is
explained in the Working with Yocto document.

4.2 Adding Packages Using PIP

Pip is a package management system used to install software packages written in Python. Pip can be
used to install Python extensions from an online repository containing more than 80000 packages.
With the correct extension installed almost anything can be done in Python.

Pip can be installed by including the python-pip package when building the file system as

explained in the previous section. It has already been installed in the prebuilt images from Embedded
Artists.

Pip handles packages from https://pypi.python.org/pypi which claims to have more than 80000

packages. To install the prettytable package:

pip install prettytable

https://pypi.python.org/pypi

Developing with Python on iMX Developer’s Kits Page 10

Copyright 2016 © Embedded Artists AB Rev A

Downloading/unpacking prettytable

 Downloading prettytable-0.7.2.zip

 Running setup.py

(path:/var/volatile/tmp/pip_build_root/prettytable/setup.py)

egg_info for package prettytable

Installing collected packages: prettytable

 Running setup.py install for prettytable

Successfully installed prettytable

Cleaning up...

Note that a lot of pip packages have dependencies and if not met the package cannot be installed.

A careful inspection of the output from pip will give a clue to what is missing.

Developing with Python on iMX Developer’s Kits Page 11

Copyright 2016 © Embedded Artists AB Rev A

5 Develop
There are several ways to write, test and debug python scripts:

 Everything done on target. Using a terminal and a text editor (nano and vi are installed

by default) to write the script and then execute the script to test it. This works very well for
small scripts or small changes of large scripts. See section 3.1 for a description of this.

 Development and debugging on a PC. There are many graphical editors or development
environments that can be used on a PC to write and debug python scripts. When the script is
working then it can be transferred to the target for testing. This setup works well for scripts
that don't use target-specific instructions. For example, paths can be changed while
debugging on the PC and then changed back before executing on target.

 Remote debugging. Using an IDE on a PC to write the code and a remote debugger to step
through the code on the target. More complex to setup but in the end the most powerful way.

5.1 Development and Debugging on a PC

This alternative has very little to do with the target as everything is developed on the PC. There are a
lot of options on development environments and editors on PCs and it all comes down to the
preferences of you the developer.

The developed program can be transferred to the target in a lot of different ways including:

 USB Memory Stick

 An uSD card

 FTP (requires extra software on the target)

 SCP (secure copy over SSH)

 If it is a single file then opening it in an editor and copy-pasting from the editor on the PC
works.

5.2 Remote Debugging Using Eclipse

This chapter describes how to setup the Eclipse IDE with python support and the extra bits needed to
remotely debug code running on the Embedded Artists iMX based COM boards.

5.2.1 Prepare Target

SSH Server

The PC software requires an SSH connection to the target in order to control it and transfer files

to/from it. The SSH server can be installed on the target by including the ssh-server-openssh

feature when building the image as explained in the Working with Yocto document. It has already
been installed in the prebuilt images from Embedded Artists.

The images built with Yocto have two users: tester with no password and root with the password
pass. To gain access to all files and folders, use the root user when developing.

Use an SSH client on the PC and try to connect to the target. Make sure that it works before continuing
on with the steps below to avoid problems down the road. If you have problems creating an SSH
connection to the target see section 7.1 for more instructions.

PyDev Debugger (pydevd)
PyDev Debugger is the backend (running on the target) to the PyDev Eclipse plugin that will be used
on the PC. To install the package:

Developing with Python on iMX Developer’s Kits Page 12

Copyright 2016 © Embedded Artists AB Rev A

pip install pydevd

Downloading/unpacking pydevd

 Downloading pydevd-0.0.6.zip (1.1MB): 1.1MB downloaded

 Running setup.py

...

 Plain-python version of pydevd installed (cython speedups not

available).

Successfully installed pydevd

Cleaning up...

The output of the pip command above has been edited as it included some warnings. The installed

pydevd will work despite the warnings.

5.2.2 Prepare PC

The PC needs to have Python installed as well as the Eclipse IDE with the PyDev and Remote System
Explorer plugins. This will be covered below.

Python

The first thing is to install Python. It is best to choose the same version as the one used on the target.
To check which version that is used run the following command in a terminal:

python -V

Python 2.7.9

A Python installer can be downloaded from https://www.python.org/downloads/.

Eclipse

The next thing to do is to download and run the Eclipse installer from
(https://www.eclipse.org/downloads/). When this document was written the latest version was called
Neon. Select the "Eclipse IDE for C/C++ Developers" version when prompted:

https://www.python.org/downloads/
https://www.eclipse.org/downloads/

Developing with Python on iMX Developer’s Kits Page 13

Copyright 2016 © Embedded Artists AB Rev A

Complete the wizard, accept the license agreement and wait for the installation to complete.

Install PyDev plugin in Eclipse

1) Start Eclipse

2) Go to HelpEclipse Marketplace

Developing with Python on iMX Developer’s Kits Page 14

Copyright 2016 © Embedded Artists AB Rev A

3) Search for PyDev and then click Install

4) Accept license agreements to continue with the installation

Developing with Python on iMX Developer’s Kits Page 15

Copyright 2016 © Embedded Artists AB Rev A

5) When presented with the "Selection Needed" dialog it is important to mark the Brainwy
Software as trusted before clicking OK, otherwise the installation may fail.

6) Agree to restart Eclipse for the changes to take effect

7) Go to WindowPreferences

8) Navigate to PyDevInterpretersPython Interpreters and click Quick Auto-Config

Developing with Python on iMX Developer’s Kits Page 16

Copyright 2016 © Embedded Artists AB Rev A

9) Everything should now be filled in so click OK to save the settings

Install Remote System Explorer Plugins

1) Go to HelpInstall New Software

2) Change to work with "-- All Available Sites --" and wait for the list to load

3) Enter "remote" as filter

Developing with Python on iMX Developer’s Kits Page 17

Copyright 2016 © Embedded Artists AB Rev A

4) Select "Remote System Explorer User Actions"

5) Click Next, accept licences and finally restart Eclipse

The PC is now ready.

5.2.3 Setup a Connection to Target

It is time to configure Eclipse so that it knows how to connect to the target. This is needed for
debugging as well as adding/updating/deleting files.

1) Go to WindowPerspectiveOpen PerspectiveOther...

Developing with Python on iMX Developer’s Kits Page 18

Copyright 2016 © Embedded Artists AB Rev A

2) Select Remote System Explorer from the list. If it does not appear in the list then go back to
the section above and make sure the installation instructions have been followed completely.

3) Right-click in the Remote Systems View and select to create a new connection

4) Select "SSH Only" as System Type and click Next

Developing with Python on iMX Developer’s Kits Page 19

Copyright 2016 © Embedded Artists AB Rev A

5) Fill in the IP number of the target and click Finish

There will now be a new item in the Remote System View. Expand the Sftp Files node to see parts of
the file system on the target.

An Enter Password dialog will appear when attempting to expand the Root node. If the password was
changed or a user was added in section 5.2.1 above then fill in that information, otherwise use the
default which is root as user and with pass as password.

A warning about an RSA key fingerprint may appear. Click Yes to continue.

Developing with Python on iMX Developer’s Kits Page 20

Copyright 2016 © Embedded Artists AB Rev A

It should now be possible to browse the target's file system without any more dialogs appearing.

5.2.4 Create a Project

Now that everything has been prepared it is finally time to create the python project. This is done in the
Remote System View.

1) Expand the target node down to the My Home node

2) Right-click and add the project folder, in this example called myproj1

3) Now turn that folder into a project by right-clicking on it and selecting the Create Remote
Project option. It will seem like nothing happens.

4) Add a new file to the myproj1 folder, in this example called test.py

5) Double-click the test.py file and then copy-paste the following into it:

##!!//uussrr//bbiinn//ppyytthhoonn

iimmppoorrtt ssyyss

iimmppoorrtt ppyyddeevvdd

ppyyddeevvdd..sseettttrraaccee((''119922..116688..66..5544'')) ## rreeppllaaccee IIPP wwiitthh aaddddrreessss

 ## ooff EEcclliippssee hhoosstt mmaacchhiinnee

ii == 33

pp == ''HHeelllloo!!'' ** ii

pprriinntt pp

5.2.5 Debug

1) Open the Debug perspective in Eclipse by going to the WindowPerspectiveOpen
PerspectiveOther...

2) Select Debug from the list and click OK

Developing with Python on iMX Developer’s Kits Page 21

Copyright 2016 © Embedded Artists AB Rev A

3) Click the "Start the pydev server" button

don't confuse the button with the normal debug button. The server button has a small p on it.

4) Now start the program on the target. Type the following in the terminal:

cd myproj1/

python test.py

5) The debugger should now start in Eclipse:

The debugger has options to set breakpoints, inspect/change variable values, single step and run
through code. The debug server will keep running even if the test script reaches its end. Just run again
from step 4 as many times as is needed.

5.2.6 Breakpoints

Due to the way that PyDev handles paths, breakpoints may not work. To fix this (only needed one time
per target):

Developing with Python on iMX Developer’s Kits Page 22

Copyright 2016 © Embedded Artists AB Rev A

1) Double-click on the area to the left of the line number in test.py to set a breakpoint

2) Start the program

cd myproj1/

python test.py

warning: Debugger speedups using cython not found. Run

'"/usr/bin/python" "/usr/lib/python2.7/site-

packages/setup_cython.py" build_ext --inplace' to build.

pydev debugger: warning: trying to add breakpoint to file that

does not exist: /home/root/myproj1/C:/temp/2016-07-

05/ws/RemoteSystemsTempFiles/192.168.6.56/home/root/myproj1/te

st.py (will have no effect)

3) To fix this use the Remote Systems View in Eclipse and browse to Sftp Files Root usr
 lib python2.7 site-packages

4) Double-click on pydev_file_utils.py to open it

5) Scroll down to the line with

PPAATTHHSS__FFRROOMM__EECCLLIIPPSSEE__TTOO__PPYYTTHHOONN == [[]]

6) Change that line to

PPAATTHHSS__FFRROOMM__EECCLLIIPPSSEE__TTOO__PPYYTTHHOONN == [[

((rr''CC::\\tteemmpp\\22001166--0077--0055\\wwss\\RReemmootteeSSyysstteemmssTTeemmppFFiilleess\\119922..116688..66..5566\\hhoommee\\rroooott'',,

 rr''//hhoommee//rroooott''))

]]

Substitute the path with what your warning pointed to (marked in green in step 2 above) as it
depends on where your workspace is located.

7) Save the file

8) Stop and restart the debugging

When tested on a PC running Ubuntu 14.04 the breakpoints worked without the fix above and the
statement should be kept at the default which is

PATHS_FROM_ECLIPSE_TO_PYTHON = []

5.2.7 Exiting Eclipse

The best way to exit eclipse after having used the debugger is:

1) Stop any running debug session

2) Stop the debug server

3) Save changes in open files

4) Disconnect from the Remote System

Developing with Python on iMX Developer’s Kits Page 23

Copyright 2016 © Embedded Artists AB Rev A

5) Exit eclipse

6) Shut down the target (if no longer needed)

5.2.8 Remote Shell

It is always possible to enter commands on the target using either a terminal program or an SSH
program. The Remote System Explorer plugin adds another way - the Remote Shell. To enable it go to
the WindowShow View menu and then select the Remote Systems->Remote Shell option in the
dialog. Use the menu button in the Remote Shell tab and select the target:

5.2.9 Target Changed IP Address

The project that was created in section 5.2.4 was set to use a fixed IP address (192.168.6.56) and if
that IP address changes after a reboot of the target then Eclipse cannot connect. This can be fixed
either by changing the target from a dynamic to a fixed IP address (not covered by this guide) or by
changing the IP number in Eclipse. The IP number is found by selecting the target node in the Remote
Systems View.

Click on the current IP number (192.168.6.56) in the field next to Host Name and change it to the new
one. Don't change the Name as that will cause problems with the local copy of the remote project.

Developing with Python on iMX Developer’s Kits Page 24

Copyright 2016 © Embedded Artists AB Rev A

Developing with Python on iMX Developer’s Kits Page 25

Copyright 2016 © Embedded Artists AB Rev A

6 Further Expansion
The links in this section are to give some starting points when searching for ways to extend your
Python scripts or to learn more about Python. We have not tested or verified any of the frameworks,
packages or plugins and cannot guarantee that they will work.

Beginner: Introductory Books

https://wiki.python.org/moin/IntroductoryBooks

Beginner: Examples and Sample Code

https://wiki.python.org/moin/BeginnersGuide/Examples

Beginner: Links to more books, tutorials, and lessons

https://wiki.python.org/moin/BeginnersGuide/Programmers

Other IDEs?

There are a lot of alternative to using Eclipse, just look at the list on the python wiki:
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments.

Available GUI package(s)?

There are a lot of options when it comes to GUI development using python:

https://wiki.python.org/moin/GuiProgramming

Some of the more frequently mentioned ones are (in no particular order):

 Kivy - http://kivy.org/

 PyQT - https://wiki.python.org/moin/PyQt

 PyGUI - http://www.cosc.canterbury.ac.nz/greg.ewing/python_gui/

 libavg - https://www.libavg.de/site/

 wxPython - http://wxpython.org/

Other modules/libs that are good to have?

https://wiki.python.org/moin/UsefulModules

https://wiki.python.org/moin/IntroductoryBooks
https://wiki.python.org/moin/BeginnersGuide/Examples
https://wiki.python.org/moin/BeginnersGuide/Programmers
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/GuiProgramming
http://kivy.org/
https://wiki.python.org/moin/PyQt
http://www.cosc.canterbury.ac.nz/greg.ewing/python_gui/
https://www.libavg.de/site/
http://wxpython.org/
https://wiki.python.org/moin/UsefulModules

Developing with Python on iMX Developer’s Kits Page 26

Copyright 2016 © Embedded Artists AB Rev A

7 Troubleshooting
7.1 Cannot get an SSH connection to the target

If you have problems getting an SSH connection to the target follow the steps below. PuTTY will be
used as SSH client in these steps. The client can be downloaded from www.putty.org.

1. Get the IP address of the target. Enter the command in a terminal application connected to
the target (as described in the Getting Started manual). In the example below the IP address
is 192.168.6.50.

ifconfig
eth0 Link encap:Ethernet HWaddr 00:1A:F1:10:00:9A

 inet addr:192.168.6.50 Bcast:192.168.6.255 Mask:255.255.255.0

 inet6 addr: fe80::21a:f1ff:fe10:9a/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

2. Start PuTTY and enter the IP address into the Host Name field and then click he Open button.

Figure 1 - PuTTY SSH Client

3. You will be asked to enter a username. Enter root.

4. You will then be asked to enter a password. Enter pass.

5. Now you are logged into the target via an SSH connection. If you get an “Access denied”
message please follow the instructions below.

7.1.1 Solve “Access denied” problem

If you get an “Access denied” message when trying to login you have to modify the SSH configuration.
By default SSH may not allow the user root to login. The instructions below assume that you have a
terminal application connected to the target.

1. Open the configuration file for the SSH server

http://www.putty.org/

Developing with Python on iMX Developer’s Kits Page 27

Copyright 2016 © Embedded Artists AB Rev A

nano /etc/ssh/sshd_config

2. Find the line that starts with #PermitRootLogin and remove the ‘#’ (hash) character. If you
cannot find this line just add it to the file (without the hash)

PPeerrmmiittRRoooottLLooggiinn yyeess

3. Save the file and exit the editor (in nano it is Ctrl-X followed by Y and Enter).

4. Restart the SSH server

/etc/init.d/sshd restart

5. Now try to connect to the target again.

