

 Developing using C on iMX Developer’s Kit
Copyright 2021 © Embedded Artists AB

Developing using C

on iMX Developer’s Kits

Developing using C on iMX Developer’s Kits Page 2

Copyright 2021 © Embedded Artists AB Rev C

Embedded Artists AB
Rundelsgatan 14
SE-211 36 Malmö
Sweden

http://www.EmbeddedArtists.com

Copyright 2021 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of
Embedded Artists AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and
specifically disclaim any implied warranties or merchantability or fitness for any particular purpose.
Information in this publication is subject to change without notice and does not represent a
commitment on the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements on this document. Send your comments
by using the contact form: www.embeddedartists.com/contact-us.

Trademarks

All brand and product names mentioned herein are trademarks, services marks, registered
trademarks, or registered service marks of their respective owners and should be treated as such.

http://www.embeddedartists.com/

Developing using C on iMX Developer’s Kits Page 3

Copyright 2021 © Embedded Artists AB Rev C

Table of Contents
1 Document Revision History 4

2 Introduction ... 5

2.1 Conventions .. 5

3 Getting started .. 6

3.1 Install toolchain .. 6

3.2 Hello world .. 7

3.3 Run the application on target .. 7

4 Eclipse ... 9

4.1 Updates to the Yocto image .. 9

4.2 Install Eclipse ... 9

4.3 Create and configure a project .. 10

4.4 Run the application on target .. 19

4.5 Debug the application .. 29

5 Troubleshooting .. 34

5.1 Allow user “root” to use an SSH connection 34

Developing using C on iMX Developer’s Kits Page 4

Copyright 2021 © Embedded Artists AB Rev C

1 Document Revision History
Revision Date Description

A 2017-01-10 First release

B 2017-02-15 Added section 4.1 Updates to the Yocto image

C 2021-05-21 Added link to prebuilt toolchain for 64-bit architectures in section 3.1

Developing using C on iMX Developer’s Kits Page 5

Copyright 2021 © Embedded Artists AB Rev C

2 Introduction
When developing applications for Linux you have a large selection of programming languages, editors,
development environments, libraries and toolchains to choose from. This document will provide you
with instructions for how to get started with application development using the C programming
language.

This document is not a course in C programming or Embedded Linux application development.
Instead, it will guide you in setting up the tools that exist for building your first “Hello world” application.

If you have never worked with Embedded Linux a recommended course is bootlin’s “Embedded Linux
training”. The slides are available for download on their site:

https://bootlin.com/training/embedded-linux/

Additional documentation you might need:

• The Getting Started document for the board you are using.

• The Working with Yocto document

2.1 Conventions

A number of conventions have been used throughout to help the reader better understand the content
of the document.

Constant width text – is used for file system paths and command, utility and tool names.

$ This field illustrates user input in a terminal running on the

development workstation, i.e., on the workstation where you edit,

configure and build Linux

This field illustrates user input on the target hardware, i.e.,

input given to the terminal attached to the COM Board

TThhiiss ffiieelldd iiss uusseedd ttoo iilllluussttrraattee eexxaammppllee ccooddee oorr eexxcceerrpptt ffrroomm aa

ddooccuummeenntt..

This field is used to highlight important information

https://bootlin.com/training/embedded-linux/

Developing using C on iMX Developer’s Kits Page 6

Copyright 2021 © Embedded Artists AB Rev C

3 Getting started
The instructions in this section have been tested on a virtual machine running lubuntu 16.04. The
document “Working with Yocto to build Linux” has a chapter that explains how to create a VMware
based virtual machine running lubuntu.

If you are an experienced Linux user it shouldn’t be a problem using another Linux distribution with the
instructions below as a guideline.

3.1 Install toolchain

To be able to build an application that will run on Embedded Artists iMX based COM boards a
toolchain is needed. The toolchain contains cross compiler, linker, and needed libraries.

The toolchain can be built in Yocto using the meta-toolchain image. See the document “Working with
Yocto to build Linux” for more information about Yocto.

$ bitbake meta-toolchain

The build will result in a file located at <build directory>/tmp/deploy/sdk. The exact

name of the file depends on several parameters, but in our example, it is called:

fsl-imx-fb-glibc-x86_64-meta-toolchain-cortexa9hf-vfp-neon-

toolchain-4.1.15-1.2.0.sh

Part of file name Description

fsl-imx-fb The distribution (DISTRO parameter) used when initializing the build.

x86_64 Architecture of the host computer. In this example a 64-bit Intel x86 platform

4.1.15-1.2.0 BSP version

It is recommended to build this toolchain on your host computer where you will do the development,
but if you have a 64-bit Intel x86 based host computer you can download a pre-built version from
imx.embeddedartsits.com.

For iMX6 and iMX7 based boards (32-bit architecture)

$ wget imx.embeddedartists.com/common/fsl-imx-fb-glibc-x86_64-

meta-toolchain-cortexa9hf-vfp-neon-toolchain-4.1.15-1.2.0.sh

For iMX8 based boards (64-bit architecture)

$ wget imx.embeddedartists.com/common/fsl-imx-wayland-glibc-

x86_64-meta-toolchain-aarch64-5.4-zeus.sh

Install the toolchain. It is recommended to use the default settings (such as installation path) when
installing. Replace <installation file> below with the name of the file you have downloaded

or built.

$ chmod a+x <installation file>

$ sudo ./<installation file>

http://imx.embeddedartists.com/common/fsl-imx-fb-glibc-x86_64-meta-toolchain-cortexa9hf-vfp-neon-toolchain-4.1.15-1.2.0.sh

Developing using C on iMX Developer’s Kits Page 7

Copyright 2021 © Embedded Artists AB Rev C

3.2 Hello world

To test the toolchain and make sure everything is working a simple “Hello world” application will be
developed.

1. Open a terminal application on your host computer (the host computer in our example is
lubuntu 16.04)

2. Setup the toolchain environment by running the source command below. A file was installed

together with the toolchain that contains all environment variables needed to be setup. The
instructions below use the default installation path.

$ source /opt/fsl-imx-fb/4.1.15-1.2.0/environment-setup-

cortexa9hf-vfp-neon-poky-linux-gnueabi

3. You can verify that the environment variables have been correctly setup by running the
command below. This command shows the version of the GCC compiler.

$ $CC --version

arm-poky-linux-gnueabi-gcc (GCC) 5.2.0

4. Create the “Hello world” application using a text editor. In this example we are using nano.

Create the file and copy the content of the example below to that file.

$ cd ~

$ mkdir hello_app

$ cd hello_app

$ nano hello.c

##iinncclluuddee <<ssttddiioo..hh>>

iinntt mmaaiinn((iinntt aarrggcc,, cchhaarr ****aarrggvv))

{{

 pprriinnttff((""HHeelllloo wwoorrlldd\\nn""));;

 rreettuurrnn 00;;

}}

5. Save the file (in nano use Ctrl+X followed by Y and Enter)

6. From the terminal where you setup the toolchain environment compile the application. We are
giving the application the name “hello” using the –o argument to the compiler.

$ $CC –o hello hello.c

7. You will now have a file named “hello”. Go to the next section for instructions of how to run
this application on target.

3.3 Run the application on target

In the previous section the application was built. In this section the application will be copied to the
target via a USB memory stick.

1. Connect a USB memory stick to your host computer and copy the file “hello” to that memory
stick. No instructions are given here since it normally is only a drag-and-drop procedure.

2. Unmount the USB memory stick from your host computer and insert it into the developer’s kit.
You should see output in the terminal connected to the target that looks similar to below.

Developing using C on iMX Developer’s Kits Page 8

Copyright 2021 © Embedded Artists AB Rev C

usb 1-1.3: new high-speed USB device number 7 using ci_hdrc

usb-storage 1-1.3:1.0: USB Mass Storage device detected

scsi host4: usb-storage 1-1.3:1.0

scsi 4:0:0:0: Direct-Access SanDisk U3 Cruzer Micro 2.18 PQ:

0 ANSI: 2

scsi 4:0:0:1: CD-ROM SanDisk U3 Cruzer Micro 2.18 PQ:

0 ANSI: 2

sd 4:0:0:0: [sda] 8015505 512-byte logical blocks: (4.10 GB/3.82

GiB)

sd 4:0:0:0: [sda] Write Protect is off

sd 4:0:0:0: [sda] No Caching mode page found

sd 4:0:0:0: [sda] Assuming drive cache: write through

 sda: sda1

sd 4:0:0:0: [sda] Attached SCSI removable disk

3. The important part is the device name “sda1”. Mount the USB memory stick.

mount /dev/sda1 /mnt

4. Copy the application to the target. It is assumed that the file was copied to the root of the USB
memory stick (in step 1 above). The ‘~’ character means that we are copying the file to the
home directory.

cp /mnt/hello ~

5. Run the application

cd ~

./hello

Hello world

6. If you get a “permission denied” message instead of “Hello world” add execution permissions
to the application and then run it again

chmod a+x hello

Developing using C on iMX Developer’s Kits Page 9

Copyright 2021 © Embedded Artists AB Rev C

4 Eclipse
Eclipse is a popular software development kit that can be used with many different programming
languages. This chapter describes how to get started with Eclipse when developing C applications.

4.1 Updates to the Yocto image

The default Yocto images provided by Embedded Artists are missing some functionality needed when
following the instructions in this chapter. More specifically it is a GDB server – needed for debugging
and a SFTP server – needed when downloading an application to target that are missing.

The servers can be added by modifying the local.conf file in your build. See the document

“Working with Yocto to build Linux” for more details about building images.

1. Open local.conf. Replace <build dir> with your build directory.

$ nano <build dir>/conf/local.conf

2. Find the IMAGE_INSTALL_append variable and add the lines below.

 ggddbbsseerrvveerr \\

 ooppeennsssshh--ssffttpp--sseerrvveerr \\

3. Save the file and exit the editor: CTRL+X followed by Y and Enter.

4. Now build your image. In this example we are using a “core-image-base” build, but replace
this with the image you are building.

$ bitbake core-image-base

5. When the image has been built don’t forget to deploy the image on the target. For more
information see the “Working with Yocto” document.

4.2 Install Eclipse

If you haven’t already got Eclipse on your host computer follow these instructions to install it. Please
note that we are using lubuntu 16.04 when writing these instructions.

NOTE: It is Eclipse 3.8.1 that was installed when writing these instructions. If you have another
version of Eclipse there could be minor differences.

1. Eclipse can be installed using apt-get

$ sudo apt-get install eclipse

2. Answer Y to any question. It takes a couple of minutes to install eclipse.

3. Since we are doing C development we also need to install CDT (C/C++ Development Tooling)

$ sudo apt-get install eclipse-cdt

4. To be able to connect to the target from within Eclipse we are going to use a plugin called
Remote System Explorer.

Developing using C on iMX Developer’s Kits Page 10

Copyright 2021 © Embedded Artists AB Rev C

$ sudo apt-get install eclipse-rse

4.3 Create and configure a project

Start Eclipse

Start Eclipse either from the menu (normally under “Programming”) or by writing eclipse in a

terminal window.

$ eclipse &

You will be asked to select a workspace as shown in Figure 1.

Figure 1 - Select a workspace

Click Ok and if the workspace is new or has no projects you will be presented with the “Welcome
screen” that can look as shown in Figure 2. Click on the “Workbench” button at the bottom of the
screen.

Developing using C on iMX Developer’s Kits Page 11

Copyright 2021 © Embedded Artists AB Rev C

Figure 2 - Eclipse welcome screen

Create a project

Create a new project by going to File → New → Project in the menu. Choose a “C Project” as shown
in Figure 3 and then click “Next”.

Figure 3 - New Project wizard

Enter a project name (“hello” in this example). Select project type as an “Empty project” and set
toolchain to be “Cross GCC” as shown in Figure 4.

Developing using C on iMX Developer’s Kits Page 12

Copyright 2021 © Embedded Artists AB Rev C

Figure 4 - Project name and type

Click “Next” and then just use the default settings in the “Select configurations” dialog as shown in
Figure 5.

Figure 5 - Select configurations

Developing using C on iMX Developer’s Kits Page 13

Copyright 2021 © Embedded Artists AB Rev C

Click “Next”. Now it is time to set the path to the cross-compiler. Set the prefix to arm-poky-

linux-gnueabi-. Set the path to (change if you have installed the toolchain elsewhere)
/opt/fsl-imx-fb/4.1.15-1.2.0/sysroots/x86_64-pokysdk-

linux/usr/bin/arm-poky-linux-gnueabi.

When you are done click the “Finish” button as shown in Figure 6.

Figure 6 - Cross compiler

Create the application

Create a new file by going to File → New → Source File in the menu. Enter a file name as shown in
Figure 7 (hello.c in this example) and then click “Finish”.

Developing using C on iMX Developer’s Kits Page 14

Copyright 2021 © Embedded Artists AB Rev C

Figure 7 - New source file

Copy the “Hello world” application (source code) from section 3.2 to the newly created file as shown in
Figure 8.

Figure 8 - Hello world application

Configure the project

It is now time to configure the project. The path to “sysroot” is needed in several places so the first step
is to create an environment variable specifying this path.

Developing using C on iMX Developer’s Kits Page 15

Copyright 2021 © Embedded Artists AB Rev C

Go to Project → Properties in the menu and then C/C++ Build → Environment. Click the “Add” button
and create a variable named SDKTARGETSYSROOT with the path /opt/fsl-imx-fb/4.1.15-

1.2.0/sysroots/cortexa9hf-vfp-neon-poky-linux-gnueabi as shown in Figure 9.

Figure 9 - Sysroot as environment variable

A number of compiler options must be specified in order to correctly compile the application. Go to
C/C++ Build → Settings and then click on Cross GCC Compiler →Miscellaneous. Add the line below
to the “Other flags” field in this window as shown in Figure 10.

-march=armv7-a -mfloat-abi=hard -mfpu=neon -mtune=cortex-a9 --

sysroot=${SDKTARGETSYSROOT}

Developing using C on iMX Developer’s Kits Page 16

Copyright 2021 © Embedded Artists AB Rev C

Figure 10 - Compiler options

Options must also be given to the linker. Go to C/C++ Build → Settings and then Cross GCC Linker
→Miscellaneous. Add the line below to the “Linker flags” field as shown in Figure 11.

--sysroot=${SDKTARGETSYSROOT} -mfloat-abi=hard

Figure 11 - Linker options

Developing using C on iMX Developer’s Kits Page 17

Copyright 2021 © Embedded Artists AB Rev C

When creating the application you might have noticed that stdio.h was underlined (see Figure 8).

Holding the mouse cursor above the question mark shows you that stdio.h cannot be found. We

need to add a path to the “header files” to get rid of this warning. Go to C/C++ General → Paths and
Symbols and then add the directory ${SDKTARGETSYSROOT}/usr/include. Click the “Apply”

button and then “OK”.

Figure 12 - Path to headers

Build the application

Now it is time to build the application. Right-click on the project (“hello”) and then select “Build Project”
as shown in Figure 13 below.

You can see the output of the build in the “Console window” as shown in Figure 14.

Developing using C on iMX Developer’s Kits Page 18

Copyright 2021 © Embedded Artists AB Rev C

Figure 13 - Build Project

Figure 14 - Console output from a build

Developing using C on iMX Developer’s Kits Page 19

Copyright 2021 © Embedded Artists AB Rev C

4.4 Run the application on target

The application is now located in your workspace under the Debug directory. For these instructions

that would be in the directory /home/user/workspace/hello/Debug/. You can use the same

instructions as in section 3.3 to copy the application to a USB memory stick and then to the target.

Another alternative is to use the plugin “Remote System Explorer”, but first it must be configured.

Open the Remote System Explorer Perspective

Go to Window → Open Perspective → Other as shown in Figure 15.

Figure 15 - Change perspective

Select “Remote System Explorer” as shown in Figure 16.

Figure 16 - Select Remote System Perspective

Create connection to remote system

Now it is time to configure the connection to the target. Click on the icon shown in Figure 17.

Developing using C on iMX Developer’s Kits Page 20

Copyright 2021 © Embedded Artists AB Rev C

Figure 17 - Create connection to remote system

Select “Linux” as the remote system type as shown in Figure 18.

Figure 18 – Remote system type

Developing using C on iMX Developer’s Kits Page 21

Copyright 2021 © Embedded Artists AB Rev C

Specify the IP address of the remote target and give it a description as shown in Figure 19. Please
note that the IP address will most likely be different on your target.

You can get the IP address of the target by using the ifconfig command in a terminal attached to

the target.

ifconfig

eth0 Link encap:Ethernet HWaddr CA:71:64:BD:1A:20

 inet addr:192.168.1.130 Bcast:192.168.1.255 Mask:255.255.255.0

 inet6 addr: fe80:

Figure 19 - Host name (IP address)

Go through the wizard (click the “Next” button) and choose “ssh”-related settings as shown in Figure
20, Figure 21, Figure 22, and Figure 23.

Developing using C on iMX Developer’s Kits Page 22

Copyright 2021 © Embedded Artists AB Rev C

Figure 20 - Subsystem information part 1

Figure 21 - Subsystem information part 2

Developing using C on iMX Developer’s Kits Page 23

Copyright 2021 © Embedded Artists AB Rev C

Figure 22 - Subsystem information part 3

Figure 23 - Subsystem information part 4

Developing using C on iMX Developer’s Kits Page 24

Copyright 2021 © Embedded Artists AB Rev C

Click Finish. The last step before establishing the connection is to specify which user that should login.
Right-click on the connection and select “Properties” as shown in Figure 24.

Figure 24 - Connection properties

Select “Host” and then change the “Default User ID” to “root” (or another user if you want to login with
a different user) as shown in Figure 25.

NOTE: By default, the user “root” is not permitted to use an SSH connection. See section 5.1 how
to permit the user “root” to login.

Figure 25 – User ID

Developing using C on iMX Developer’s Kits Page 25

Copyright 2021 © Embedded Artists AB Rev C

Connect to the target by right-click and select “Connect” as shown in Figure 26.

Figure 26 - Connect to target

If you are using the user “root” when logging in the default password is “pass”.

Figure 27 - Enter password

Copy application to target

Go to the location of the compiled application. You will find it under Local Files → My Home →
workspace → hello → Debug as shown in Figure 28.

Developing using C on iMX Developer’s Kits Page 26

Copyright 2021 © Embedded Artists AB Rev C

Figure 28 - Local files

Right-click on the application file (hello) and select “Copy”.

Figure 29 - Copy application

Go to the remote system and paste the application under Sftp Files → My Home as shown in Figure
30.

Developing using C on iMX Developer’s Kits Page 27

Copyright 2021 © Embedded Artists AB Rev C

Figure 30 - Copy/paste application to target

Figure 31 shows how it looks when the application has been copied to the target.

Figure 31 - Application file on the target

Start the application

To start the application we first need to start an SSH terminal. Right-click on “Ssh Terminals” and
select “Launch Terminal” as shown in Figure 32.

Developing using C on iMX Developer’s Kits Page 28

Copyright 2021 © Embedded Artists AB Rev C

Figure 32 - Launch a terminal

Figure 33 shows the terminal window.

Figure 33 - Terminal

Set execution permissions on the application file

chmod a+x hello

Run the application

Developing using C on iMX Developer’s Kits Page 29

Copyright 2021 © Embedded Artists AB Rev C

./hello

All of the above is shown in Figure 34.

Figure 34 - Run application on target

4.5 Debug the application

For more complicated applications it is really useful to being able to debug the application, that is,
single step through the code and inspect variables. This section describes how to debug your
application from Eclipse using GDB.

First create the GDB command file (.gdbint) in the project directory. You can do this by right-

clicking on the project and then New → File.

We need to set the path to the sysroot in this file in order for GDB to load shared libraries. The path
should be the same as set in the SDKTARGETSYSROOT environment variable. Add the line below to

the file.

sseett ssyyssrroooott //oopptt//ffssll--iimmxx--ffbb//44..11..1155--11..22..00//ssyyssrroooottss//ccoorrtteexxaa99hhff--vvffpp--

nneeoonn--ppookkyy--lliinnuuxx--ggnnuueeaabbii

Figure 35 - GDB command file

Go to Run → Debug Configurations in the menu and then right-click on “C/C++ Remote Application”
and select “New” as shown in Figure 36.

Developing using C on iMX Developer’s Kits Page 30

Copyright 2021 © Embedded Artists AB Rev C

Figure 36 - New debug configuration

On the “Main” tab the name of the project is specified as shown in Figure 37.

Figure 37 - Debug configuration, Main tab

Go to the “Debugger” tab and set the path to the GDB debugger and GDB command file.

/opt/fsl-imx-fb/4.1.15-1.2.0/sysroots/x86_64-pokysdk-

linux/usr/bin/arm-poky-linux-gnueabi/arm-poky-linux-gnueabi-gdb

/home/user/workspace/hello/.gdbinit

Developing using C on iMX Developer’s Kits Page 31

Copyright 2021 © Embedded Artists AB Rev C

Figure 38 -Debug configuration, Debugger tab

Within the “Debugger” tab select “Connection”. Enter the IP address of the target and port number as
show in Figure 39. The port number is used in the next step and is by default set to 10000.

Figure 39 - Connection settings for debug configuration

Developing using C on iMX Developer’s Kits Page 32

Copyright 2021 © Embedded Artists AB Rev C

Go back to the SSH terminal and start a GDB server on port 10000 debugging the application “hello”
as shown in Figure 40.

gdbserver :10000 hello

Figure 40 - GDB Server

Now it is possible to start to debug the application. Click on the debug icon and then “hello Debug” as
shown in Figure 41.

Figure 41 - Start a debug session

If you are asked to change perspective click the “Yes” button as shown Figure 42.

Figure 42 - Change perspective

A debug session is now started and will break at the main function as shown in Figure 43.

Developing using C on iMX Developer’s Kits Page 33

Copyright 2021 © Embedded Artists AB Rev C

Figure 43 - Debug session

Developing using C on iMX Developer’s Kits Page 34

Copyright 2021 © Embedded Artists AB Rev C

5 Troubleshooting
5.1 Allow user “root” to use an SSH connection

By default, the user “root” is not permitted to login via an SSH connection. By following these
instructions “root” will be permitted to login through an SSH connection. It is, however, not
recommended to use on a final application, but during development it can be permitted.

1. Open the configuration file for the SSH server

nano /etc/ssh/sshd_config

2. Find the line that starts with #PermitRootLogin and remove the ‘#’ (hash) character. If you
cannot find this line just add it to the file (without the hash)

PPeerrmmiittRRoooottLLooggiinn yyeess

3. Save the file and exit the editor (in nano it is Ctrl-X followed by Y and Enter).

4. Restart the SSH server

/etc/init.d/sshd restart

	1 Document Revision History
	2 Introduction
	2.1 Conventions

	3 Getting started
	3.1 Install toolchain
	3.2 Hello world
	3.3 Run the application on target

	4 Eclipse
	4.1 Updates to the Yocto image
	4.2 Install Eclipse
	4.3 Create and configure a project
	4.4 Run the application on target
	4.5 Debug the application

	5 Troubleshooting
	5.1 Allow user “root” to use an SSH connection

