Developing using C on iMX Developer’s Kit

Developing using C
on iMX Developer’s Kits

(@) e

Developing using C on iMX Developer’s Kits

Embedded Artists AB
Rundelsgatan 14

SE-211 36 Malmo

Sweden

http://www.EmbeddedArtists.com

Copyright 2021 © Embedded Artists AB. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of
Embedded Artists AB.

Disclaimer

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and
specifically disclaim any implied warranties or merchantability or fitness for any particular purpose.
Information in this publication is subject to change without notice and does not represent a
commitment on the part of Embedded Artists AB.

Feedback

We appreciate any feedback you may have for improvements on this document. Send your comments
by using the contact form: www.embeddedartists.com/contact-us.

Trademarks

All brand and product names mentioned herein are trademarks, services marks, registered
trademarks, or registered service marks of their respective owners and should be treated as such.

Copyright 2021 © Embedded Artists AB Rev C

http://www.embeddedartists.com/

Developing using C on iMX Developer’s Kits

Table of Contents

1 Document Revision HiStOryccccccevvvviiiiiiinnnnnn. 4
2 INtrodUCtioN ..o 5
2.1 CONVENTIONS .ottt 5
3 Getting startedccoooeeeeiiiieie e, 6
3.1 Install toolIChaiNooi i 6
3.2 Hello WOIIA .. 7
3.3 Run the application on target........ccccceeeiiiiiiiiiiie e 7
4 ECHIPSE oo 9
4.1 Updates to the YOCIO IMAGEccocuvvieiiiiiiiiiiieeiieeeee e 9
4.2 INSTAll ECHIPSE ..oiiiiiiiiee e 9
4.3 Create and configure a project......ccccccveeiiireeiiiiieisiiieeesee 10
4.4 Run the application on target........cccoovvviiiiiiiiiiieee e 19
4.5 Debug the appliCationuuvviiiiiiiiiiiiiiiiieiiieie .. 29
5 Troubleshooting.......ccoeeeiviiiiiiiiiiie e, 34
5.1 Allow user “root” to use an SSH connection............................. 34

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

1 Document Revision History

Revision Date Description

A 2017-01-10 | First release

B 2017-02-15 | Added section 4.1 Updates to the Yocto image

C 2021-05-21 | Added link to prebuilt toolchain for 64-bit architectures in section 3.1

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits Page 5

2 Introduction

When developing applications for Linux you have a large selection of programming languages, editors,
development environments, libraries and toolchains to choose from. This document will provide you
with instructions for how to get started with application development using the C programming
language.

This document is not a course in C programming or Embedded Linux application development.
Instead, it will guide you in setting up the tools that exist for building your first “Hello world” application.

If you have never worked with Embedded Linux a recommended course is bootlin’s “Embedded Linux
training”. The slides are available for download on their site:

https://bootlin.com/training/embedded-linux/

Additional documentation you might need:
o The Getting Started document for the board you are using.

o The Working with Yocto document

2.1 Conventions

A number of conventions have been used throughout to help the reader better understand the content
of the document.

Constant width text —is used for file system paths and command, utility and tool names.

$ This field illustrates user input in a terminal running on the
development workstation, i.e., on the workstation where you edit,
configure and build Linux

This field illustrates user input on the target hardware, i.e.,
input given to the terminal attached to the COM Board

This field is used to illustrate example code or excerpt from a
document.

This field is used to highlight important information

Copyright 2021 © Embedded Artists AB Rev C

https://bootlin.com/training/embedded-linux/

Developing using C on iMX Developer’s Kits Page 6

3 Getting started

The instructions in this section have been tested on a virtual machine running lubuntu 16.04. The
document “Working with Yocto to build Linux” has a chapter that explains how to create a VMware
based virtual machine running lubuntu.

If you are an experienced Linux user it shouldn’t be a problem using another Linux distribution with the
instructions below as a guideline.
3.1 Install toolchain

To be able to build an application that will run on Embedded Artists iMX based COM boards a
toolchain is needed. The toolchain contains cross compiler, linker, and needed libraries.

The toolchain can be built in Yocto using the meta-toolchain image. See the document “Working with
Yocto to build Linux” for more information about Yocto.

S bitbake meta-toolchain

The build will result in a file located at <build directory>/tmp/deploy/sdk. The exact
name of the file depends on several parameters, but in our example, it is called:

fsl-imx-fb-glibc-x86 64-meta-toolchain-cortexa%hf-vfp-neon-
toolchain-4.1.15-1.2.0.sh

Part of file name Description
fsl-imx-fb The distribution (DISTRO parameter) used when initializing the build.
x86_64 Architecture of the host computer. In this example a 64-bit Intel x86 platform

4.1.15-1.2.0 BSP version

It is recommended to build this toolchain on your host computer where you will do the development,
but if you have a 64-bit Intel x86 based host computer you can download a pre-built version from
imx.embeddedartsits.com.

For iMX6 and iMX7 based boards (32-bit architecture)

$ wget imx.embeddedartists.com/common/fsl-imx-fb-glibc-x86 64-
meta-toolchain-cortexa9hf-vfp-neon-toolchain-4.1.15-1.2.0.sh

For iMX8 based boards (64-bit architecture)

$ wget imx.embeddedartists.com/common/fsl-imx-wayland-glibc-
x86 64-meta-toolchain-aarch64-5.4-zeus.sh

Install the toolchain. It is recommended to use the default settings (such as installation path) when
installing. Replace <installation file> below with the name of the file you have downloaded
or built.

$ chmod a+x <installation file>
$ sudo ./<installation file>

Copyright 2021 © Embedded Artists AB Rev C

http://imx.embeddedartists.com/common/fsl-imx-fb-glibc-x86_64-meta-toolchain-cortexa9hf-vfp-neon-toolchain-4.1.15-1.2.0.sh

Developing using C on iMX Developer’s Kits Page 7

3.2 Helloworld

To test the toolchain and make sure everything is working a simple “Hello world” application will be
developed.

1. Open a terminal application on your host computer (the host computer in our example is
lubuntu 16.04)

2. Setup the toolchain environment by running the source command below. A file was installed
together with the toolchain that contains all environment variables needed to be setup. The
instructions below use the default installation path.

$ source /opt/fsl-imx-fb/4.1.15-1.2.0/environment-setup-
cortexa9hf-vfp-neon-poky-linux—-gnueabi

3. You can verify that the environment variables have been correctly setup by running the
command below. This command shows the version of the GCC compiler.

$ $CC --version
arm-poky-linux-gnueabi-gcc (GCC) 5.2.0

4. Create the “Hello world” application using a text editor. In this example we are using nano.
Create the file and copy the content of the example below to that file.

eel =~

mkdir hello app
cd hello app
nano hello.c

Uy U Uy U

#include <stdio.h>

int main(int argc, char **argv)
{
printf ("Hello world\n");
return 0O;

5. Save the file (in nano use Ctrl+X followed by Y and Enter)

6. From the terminal where you setup the toolchain environment compile the application. We are
giving the application the name “hello” using the —o argument to the compiler.

$ SCC -o hello hello.c

7. You will now have a file named “hello”. Go to the next section for instructions of how to run
this application on target.

3.3 Run the application on target

In the previous section the application was built. In this section the application will be copied to the
target via a USB memory stick.

1. Connect a USB memory stick to your host computer and copy the file “hello” to that memory
stick. No instructions are given here since it normally is only a drag-and-drop procedure.

2. Unmount the USB memory stick from your host computer and insert it into the developer’s kit.
You should see output in the terminal connected to the target that looks similar to below.

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

usb 1-1.3: new high-speed USB device number 7 using ci hdrc
usb-storage 1-1.3:1.0: USB Mass Storage device detected

scsi host4: usb-storage 1-1.3:1.0

scsi 4:0:0:0: Direct-Access SanDisk U3 Cruzer Micro 2.18 PQ:
0 ANSI: 2

scsi 4:0:0:1: CD-ROM SanDisk U3 Cruzer Micro 2.18 PQ:
0 ANSI: 2

sd 4:0:0:0: [sda] 8015505 512-byte logical blocks: (4.10 GB/3.82
GiB)

sd 4:0:0:0: [sda] Write Protect is off

sd 4:0:0:0: [sda] No Caching mode page found

sd 4:0:0:0: [sda] Assuming drive cache: write through

sda: sdal

sd 4:0:0:0: [sda] Attached SCSI removable disk

3. Theimportant part is the device name “sda1”. Mount the USB memory stick.

mount /dev/sdal /mnt

4. Copy the application to the target. It is assumed that the file was copied to the root of the USB
memory stick (in step 1 above). The ‘~' character means that we are copying the file to the
home directory.

cp /mnt/hello ~

5. Run the application

cd ~
./hello
Hello world

6. If you get a “permission denied” message instead of “Hello world” add execution permissions
to the application and then run it again

chmod a+x hello

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits Page 9

4 Eclipse

Eclipse is a popular software development kit that can be used with many different programming
languages. This chapter describes how to get started with Eclipse when developing C applications.
41 Updates to the Yocto image

The default Yocto images provided by Embedded Artists are missing some functionality needed when
following the instructions in this chapter. More specifically it is a GDB server — needed for debugging
and a SFTP server — needed when downloading an application to target that are missing.

The servers can be added by modifying the 1ocal . conf file in your build. See the document
“Working with Yocto to build Linux” for more details about building images.

1. Open local.conf.Replace <build dir> with your build directory.

$ nano <build dir>/conf/local.conf

2. Findthe IMAGE INSTALL append variable and add the lines below.

gdbserver \
openssh-sftp-server \

3. Save the file and exit the editor: CTRL+X followed by Y and Enter.

4. Now build your image. In this example we are using a “core-image-base” build, but replace
this with the image you are building.

$ bitbake core-image-base

5. When the image has been built don't forget to deploy the image on the target. For more
information see the “Working with Yocto” document.

4.2 Install Eclipse

If you haven't already got Eclipse on your host computer follow these instructions to install it. Please
note that we are using lubuntu 16.04 when writing these instructions.

NOTE: It is Eclipse 3.8.1 that was installed when writing these instructions. If you have another
version of Eclipse there could be minor differences.

1. Eclipse can be installed using apt-get

$ sudo apt-get install eclipse

2. Answer Y to any question. It takes a couple of minutes to install eclipse.
3. Since we are doing C development we also need to install CDT (C/C++ Development Tooling)

$ sudo apt-get install eclipse-cdt

4. To be able to connect to the target from within Eclipse we are going to use a plugin called
Remote System Explorer.

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

$ sudo apt-get install eclipse-rse

4.3 Create and configure a project

Start Eclipse

Start Eclipse either from the menu (normally under “Programming”) or by writing ec1ipseina
terminal window.

$ eclipse &

You will be asked to select a workspace as shown in Figure 1.

8 Workspace Launcher - + x

Select a workspace

Eclipse PlatFform stores your projects in a folder called a workspace.
Choose a workspace Folder to use For this session.

Workspace: [fhomefuserfworkspace{ i v || Browse.

[] Use this as the default and do not ask again

Cancel | OK

Figure 1 - Select a workspace

Click Ok and if the workspace is new or has no projects you will be presented with the “Welcome
screen” that can look as shown in Figure 2. Click on the “Workbench” button at the bottom of the
screen.

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

] Resource - Eclipse Platform - + x
File Edit Navigate Search Project Run Window Help
@ wWelcome 2 {2 =

Welcome to Eclipse
Overview

The Eclipse Platform is a kind of universal tool platform - an open extensible IDE for anything and nothing in particular.

- C/C++ Development Java development
M%p Get Familiar with the C/C++ Development Tools (CDT) Get Familiar with developing Java programs using Eclipse
.. Workbench basics -Q): Eclipse plug-in development
T Learn about basic Eclipse workbench concepts Learn how to extend Eclipse by building new plug-ins

Team support
Find out how to collaborate with other developers

@ B ¥ |

Overview Tutorials Samples What's Ne\v Workbench

B ~—

Figure 2 - Eclipse welcome screen

Create a project

Create a new project by going to File - New = Project in the menu. Choose a “C Project” as shown
in Figure 3 and then click “Next”.

=] New Project - + x
Select a wizard —>
Create a new C project [
Wizards:

Iﬁ <

2% Java Project
Java Project from Existing Ant Buildfile
% Plug-in Project
' = General
" (= CfC++
C++ Project
Makefile Project with Existing Code
r = OVS

@ <Back . Next> | | Cancel |

Figure 3 - New Project wizard

Enter a project name (“hello” in this example). Select project type as an “Empty project” and set
toolchain to be “Cross GCC” as shown in Figure 4.

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

e

C Project
Create C project of selected type

C Project

Project name: E[hbllo

[& Use default location

Project type:
- (= Executable
® Empty Project

Toolchains:

Cross GCC
Linux GCC

Browse...

& Hello World ANSI C Project
* = Shared Library
* (= Static Library
* = Makefile project

® Empty Project

[show project types and toolchains only if they are supported on the platform

g

2
u
=

@ | <Back | Next > | Cancel F

Figure 4 - Project name and type

Click “Next” and then just use the default settings in the “Select configurations” dialog as shown in
Figure 5.

=] C Project - + x

Select Configurations

4{‘;,

Select platforms and configurations you wish to deploy on

r T

Project type: Executable
Toolchains: Cross GCC
Configurations:

Debug selectall

® Release ———
Deselect all

| Advanced settings... |

Use "Advanced settings" button to edit project's properties.

Additional configurations can be added after project creation.
Use "Manage configurations" buttons either on toolbar or on property pages.

@ <Back Next > Cancel Finish

Figure 5 - Select configurations

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

Click “Next”. Now it is time to set the path to the cross-compiler. Set the prefix to arm-poky-

linux-gnueabi-. Set the path to (change if you have installed the toolchain elsewhere)
/opt/fsl-imx-fb/4.1.15-1.2.0/sysroots/x86 64-pokysdk-

linux/usr/bin/arm-poky-linux-gnueabi.

When you are done click the “Finish” button as shown in Figure 6.

a C Project
Cross GCC Command

Configure the Cross GCC path and prefix

Cross compiler prefix: |arm-poky-linux-gnueabi-

Cross compiler path: [

- | Browse... |

@ < Back | Next > Cancel

Finish

Figure 6 - Cross compiler

Create the application

Create a new file by going to File > New - Source File in the menu. Enter a file name as shown in

Figure 7 (he1lo.c in this example) and then click “Finish”.

Copyright 2021 © Embedded Artists AB

Rev C

Developing using C on iMX Developer’s Kits

(—] New Source File - + x
Source File

Create a new source file. c

Source folder: |hello || Browse...

sourcefile: |hello.d |

Template: | Default Csource template s || Configure...

@ | Cancel Finish

Figure 7 - New source file

Copy the “Hello world” application (source code) from section 3.2 to the newly created file as shown in

Figure 8.
-] C/C++ - hello/hello.c - Eclipse Platform - + x
File Edit Source Refactor Navigate Search Project Run Window Help
=R & B -R-G|g-@-E-@- -0 Qx| |® - H |Bojcn| B "
[Project Explorer 3% _ =0/ [4 hello.c _ =0d|&o = @m =0
= v SR -
H 5 * hello.c
- 2L N
= hello Created on: Jan 3, 2817 B % W e %
¢+ @l Includes :/| Author: user 2 stdioh
* [hello.c e main(int, char¥) :int
2| #include =stdio.h=>
~int main(int argc, char **argv)
printf("Hello world\n");
return 9;
}
B Problems 52 _E.TaskslEconscle]EIProperties T Ta
Oitems
Description Resource Path Location Type
o® writable Smartinsert 6:4 H @l P E Y $

Figure 8 - Hello world application

Configure the project

It is now time to configure the project. The path to “sysroot” is needed in several places so the first step
is to create an environment variable specifying this path.

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

Go to Project - Properties in the menu and then C/C++ Build > Environment. Click the “Add” button
and create a variable named SDXKTARGETSYSROOT with the path /opt/fsl-imx-fb/4.1.15-
1.2.0/sysroots/cortexa%hf-vfp-neon-poky-linux-gnueabi asshown in Figure 9.

e
a Environment & -
* Resource
Builders Configuration: | Debug [Active] % | | Manage Configurations... |
= C/C++Build
Build Variables
Environment Environment variables to set add..
Logging Variable value Origin
Settings cwD | /home/andre/works| BUILD SYSTEM Select. |
Tool Chain Editor PATH /npt/fsl—imx-rh/4.1.1!§ BUILD SYSTEM | Edit...
* C/C++General PWD | /home/andre/works|; BUILD SYSTEM
 CodeAnalysi =) — N;!N‘IJ' vari'ai:ile - + X Delete)
Documentati Undefine
FileTypes | Name: E[SDKTARGETSYSROOT : !
Formatter | \aiye: srtexadhfvfp-neon-poky-linux-gnueabi Variables
Indexer e
Language Md ["] Add to all configurations
Paths and Sy
Preprocessor Cancel | OK
Project Referer

Run/Debug Settings

® Append variables to native environment

) Replace native environment with specified one

| Restore Defaults | | Apply

@ OK | Cancel

Figure 9 - Sysroot as environment variable

A number of compiler options must be specified in order to correctly compile the application. Go to
C/C++ Build - Settings and then click on Cross GCC Compiler > Miscellaneous. Add the line below
to the “Other flags” field in this window as shown in Figure 10.

-march=armv7-a -mfloat-abi=hard -mfpu=neon -mtune=cortex-a9 --
sysroot=${ SDKTARGETSYSROOT}

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

=] Properties for hello - + x
‘ a Settings -~ I
* Resource B Rttt A | | i ittt |
Builders
* C/C++Build
Build variables ®Tool Settings | #Build Steps Build Artifact | [Binary Parsers | @ Error Parsers
Environment (2 Cross Settings Other flags ‘-(-fmessage-length=0-march=armv7-a -mfloat-abi=hard -mfpu=neon -mtune=
Loggin . f
. tgtg 9 ® Cross GCC Compiler [Verbose ()
enos (2 Dialect .
Tool Chain Editor % Preprocessor [} support ANSI programs (-ansi)
+ C/C++General (# symbols [] Position Independent Code (-fPIC)
Project References 22 Includes
Run/Debug Settings (& Optimization
2 Debugging
2 warnings
- B Cross GCC Linker
2 General
(& Libraries
 Miscellaneous
(2 Shared Library Settings
- & Cross GCC Assembler
(2 General
® OK | cCancel |
Figure 10 - Compiler options
Options must also be given to the linker. Go to C/C++ Build - Settings and then Cross GCC Linker
H H “l oy ” H H
—>Miscellaneous. Add the line below to the “Linker flags” field as shown in Figure 11.
--sysroot=${SDKTARGETSYSROOT} -mfloat-abi=hard
a Properties for hello - + X
‘ a Settings & o P
+ Resource
Builders Configuration: | Debug [Active] | Manage Configurations... |
= ¢/C++Build
Build Variables
Environment B Tool Settings | #Build Steps “’Build Artifact | Binary Parsers | @ Error Parsers
Log.glng (2 Cross Settings Linker Flags |—sysrunt:S{SDKTARGETSYSROOT}—mflaat—abi:hard
Settings .
5 . - & Cross GCC Compiler oth tions (-linker [option]) £
Toel Chain Editor & Dialect er options (-Xlinker joption =

- C/C++General

. (% Preprocessor
+ Code Analysis

symbols

Documentation
Includes

File Types (2 optimization
Formatter (2 Debugging
Indexer

warnings

& Miscellaneous
- % Cross GCC Linker

2 General

(& Libraries

(2 Miscellaneous

Language Mappings

Paths and Symbols

Preprocessor Includ:
Project References
Run/Debug Settings

Other objects £
(2 Shared Library Settings
- & Cross GCC Assembler
2 General
@ OK | Cancel

Figure 11 - Linker options

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

When creating the application you might have noticed that stdio . h was underlined (see Figure 8).
Holding the mouse cursor above the question mark shows you that stdio . h cannot be found. We
need to add a path to the “header files” to get rid of this warning. Go to C/C++ General - Paths and
Symbols and then add the directory $ { SDKTARGETSYSROOT } /usr/include. Click the “Apply”
button and then “OK”.

e Properties for hello - + x
a Paths and Symbols oo -
* Resource
Builders Configuration: | Debug [Active] : | | Manage Configurations...
= C/C++Build

Build Variables
Environment
Logging

(=includes # Symbols | BiLibraries ®LibraryPaths | (3Source Location |) References

cetti Languages Include directories Add...
ettings
Assembl; = ${SDKTARGETSYSROOT}/usrfinclude .
Toel chain Editor Y e THust Edit...
C/CHG I GNUC S —
- A
enera. Delete
+ Code Analysis
Documentation Export
File Types
Formatter Move Up
Indexer
Move Down

Language Mappings

Preprocessor Includi
Project References
Run/Debug Settings

(@ "Preprocessor Include Paths, Macros etc.” property page may define additional entries
& Show built-in values

& Import Settings... | | % Export Settings...

Restore Defaults Apply

@ OK Cancel

Figure 12 - Path to headers

Build the application

Now it is time to build the application. Right-click on the project (“hello”) and then select “Build Project”
as shown in Figure 13 below.

You can see the output of the build in the “Console window” as shown in Figure 14.

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

L) C/C++ - hello/hello.c - Eclipse Platform - + x
File Edit Source Refactor Navigate Search Project Run Window Help
=R B-R- 6| @ B -E-@ B0 QN ® B (B & "
[t5 Project Explorer 52 = E'W@ hello.c =2 =0|gzo = M] =0
New ' -
'@I:el.lu : Golnto an 3, 2017 B W o %
* 3 Binaries. Open in New Window ser 4 stdio.h
v @]Inctl,udes B copy ctrlsc e main(int, char**) :int
'
D
Eheuug [paste ctrlsv [
4 ello.c
X Delete Delete » char **argv)
Source ' ello worldyn");
Move...
Rename... F2
24 Import...
& Export...
Build Project
Clean Project
&1 Refresh F5
Close Project
Close Unrelated Projects
Build Configurations » 3 Console 2 . & Propertiesw =0
Make Targets vl b 5|g HE R B
Index v
o
Run As + inker
— i-gcc --sysroot=/opt/fsl-imx-fb/4.1.15-1.2.08/sysroots/cortexadhf-vfp-n
Debug As ' get: hello
Profile As v
Team ' ed (took 137ms)
Compare With 1
Restore from Local History... -
% Bt Configure g H @ o o
J o A i mdm L ,ade Al Q B ¥ <>

Figure 13 - Build Project

] C/C++ - hello/hello.c - Eclipse Platform - + X
File Edit Source Refactor Mavigate Search Project Run Window Help
=R & B QR @@ @ -@F-@ B0y n|® P~ B (Rgcn B "
%5 Project Explorer %% = 3 | [4 hello.c 8 = 0|0 = MW =0
= v a/* -
= * hello.c
'ghd!o . * Created on: Jan 3, 2017 B RO e %
+ @k Binaries :./ Author: user u stdioh
* @l Includes e main(ink, char**):int
' = Debug #include <stdio.h>
+ [g hello.c

=int main(int argc, char **argv)

printf("Helle werld\n");
return 8;

[Z¢ Problems | ¥ Tasks| B Console % . = Properties} =g

CDT Build Console [hello] 4 4 @ Rl = = B v Yoy

Building target: hello

Invoking: Cross GCC Linker

arm-poky-linux-gnueabi-gcc --sysroot=/opt/fsl-imx-fb/4.1.15-1.2.8/sysroots/cortexadhf-vfp-n
Finished building target: hello

%"

10:39:55 Build Finished (took 137ms)

i writable smartinsert 16:1 ” @a P BE %

Figure 14 - Console output from a build

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

4.4 Run the application on target

The application is now located in your workspace under the Debug directory. For these instructions
that would be in the directory /home /user/workspace/hello/Debug/. You can use the same
instructions as in section 3.3 to copy the application to a USB memory stick and then to the target.

Another alternative is to use the plugin “Remote System Explorer”, but first it must be configured.

Open the Remote System Explorer Perspective

Go to Window > Open Perspective - Other as shown in Figure 15.

#include <stdio.h=>
—int main(int argc, ¢

printf("Hell
return 8;

Figure 15 - Change perspective

=] C/C++ - hello/hello.c - Eclipse Platform
File Edit Source Refactor Navigate Search Project Run Help

New Window

3~ @ B-QR R gy eE @ || E @
G . New Editor o
I Hide Toolbar
[t5 Project Explorer 52 = 8 [4 hello.c 52 Open Perspective + B3t ==
P e /* Show View + | &% Team Synchronizing
H S * hello.c
< - Customize Perspective... [[elgCA
* Ehello * Created on: Jan _p
* Author: user| SavePerspectiveAs...
=/ Reset Perspective...

Close Perspective
Close All Perspectives

Navigation 4

Preferences

Select “Remote System Explorer” as shown in Figure 16.

=] Open Perspective - + x

0@ c/c++

= CVS Repository Exploring
¥ Debug

&' Java

& Java Browsing

f2? Java Type Hierarchy

4= Plug-in Development

[5 Resource (default)

&Y Team Synchronizing

Cancel | OK

Figure 16 - Select Remote System Perspective

Create connection to remote system

Now it is time to configure the connection to the target. Click on the icon shown in Figure 17.

Copyright 2021 © Embedded Artists AB

Rev C

Developing using C on iMX Developer’s Kits

] Remote System Explorer - hello/hello.c - Eclip
File Edit Source Refactor MNavigate Search Project Run Window Help

=R & B0 | PO EN BRI E |4
J §| - é| - - -

R wste B W Team} = 08 | [¢ hello.c &=
/ o
\ * hello.c
* Created on: Jan 3, 2017
Laletal Files * Author: user
% Local shells */

#include <=stdio.h=
=int main(int argc, char **argv)

printf({"Hello worldiyn");
return 9;

4 Remote System Details 2 . ¥ Tasksw

= Propertie 52 [, Remotesw =0

B 3 =Y

Property Value

Figure 17 - Create connection to remote system

Select “Linux” as the remote system type as shown in Figure 18.

(—] New Connection - + x
Select Remote System Type

Any distribution of Linux =|l_'L=
System type:

| type filter text a |

- (= General
% FTP Only
Bl Local
5% SSH Only
&% Telnet Only (Experimental)
unix UNix
i# windows

@ <Back Next = | Cancel | Finish

Figure 18 — Remote system type

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

Specify the IP address of the remote target and give it a description as shown in Figure 19. Please
note that the IP address will most likely be different on your target.

You can get the IP address of the target by using the i fconfig command in a terminal attached to

the target.
ifconfig
etho Link encap:Ethernet HWaddr CA:71:64:BD:1A:20
inet addr:192.168.1.130 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80:
=] New Connection - + x
Remote Linux System Connection
Define connection information
Parent profile: vmlubuntu =
Hoskt name: 192.168.1.130 Za
Connection name: 192.168.1.130
Description: |iMX Target]
[Verify host name
Configure proxy settings
@ <Back Next = Cancel Finish

Figure 19 - Host name (IP address)

Go through the wizard (click the “Next” button) and choose “ssh”-related settings as shown in Figure
20, Figure 21, Figure 22, and Figure 23.

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

(—] New Connection - + x

Files

Define subsystem information

Configuration Properties
[dstore.files Property Value
[ftp.files

Available Services
22 Ssh / SFtp File Service
- %4 SSH Connector Service
£ SSH settings

Description
Woaork with files on remote systems using the Secure Shell (ssh) protocol.

@ | <Back || Next> || Cancel | . Finish |

Figure 20 - Subsystem information part 1

a New Connection - + x

Processes

Define subsystem information

Configuration Properties

[[J dstore.processes Property Value

processes.shell.linux

Available Services
2 Shell Process Service

Description
This configuration allows you to work with processes on remote linux systems using
any contributed Shell subsystem.

@ | <Back || Next> || Cancel | . Finish |

Figure 21 - Subsystem information part 2

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

-} New Connection - + x
Shells

Define subsystem information

Configuration Properties

[dstore.shells Property

ssh.shells

Value

Available Services
2 Genericshell service

- &4 SSH Connector Service
= SSH Settings

Description

Work with shells and commands on remote systems using the Secure Shell (ssh)
protocol.

@ | =<Back | Next> || Cancel | Finish

Figure 22 - Subsystem information part 3

—) New Connection - + x
Ssh Terminals

Define subsystem information

Configuration Properties

ssh.terminals Property Value

Available Services
A SSH Terminal Service

- &4 SSH Connector Service
= SSH Settings

Description

Work with terminals and commands on remote systems using the Secure Shell (ssh)
protocol.

@ <Back Nexk > | Cancel || Finish |

Figure 23 - Subsystem information part 4

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

Click Finish. The last step before establishing the connection is to specify which user that should login.
Right-click on the connection and select “Properties” as shown in Figure 24.

HRremotesyste = . %=Team| = 3| [& hello.c =

+£ B & ¥ _/: hello.c

* ELocal . Created

+ *%, Local Files * Autl
%% Local shells */

- A 192.168.1 120 #include <s°
» TysfepFilg NeW * lin(int
¢+ B shellPr Go Into .

Ssshshe GOTO | pris

& ssh Terr B8 Open in New Window
B show in Table
& Monitor
& Refresh F5
1 Rename... F2
X Delete... Delete
= Copy... Systerr

Export...
Import...

E Propertie | it Move Up

Property Connect
Connection
Default U54 __Properties Alb+Enter

Figure 24 - Connection properties

Select “Host” and then change the “Default User ID” to “root” (or another user if you want to login with
a different user) as shown in Figure 25.

NOTE: By default, the user “root” is not permitted to use an SSH connection. See section 5.1 how
to permit the user “root” to login.

= Properties for 192.168.1.130 - + X
a Host fe=T -
Connector Services Resource type: Connection to remote system
Host Parent profile: vmlubuntu
System type: Linux
Host name: 192.168.1.130 v
Connection name: 192.168.1.130
Default User ID: 1i{root]
Description: iMX Target

[C] Verify host name

Configure proxy settings

Default encoding
Note: This setting can only be changed when no subsystem is connected
@® Default From remote system

() Other: |UTF-8 -

Figure 25 — User ID

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

Connect to the target by right-click and select “Connect” as shown in Figure 26.

]
#H Remote Syste 3. %=Team| — O [I@ hello.c % _
= = S /*
£ & El = * hello.c
* Ef Local * (Created ¢
v *2, Local Files . Authe
% Local Shells */
- 192.168.1.12n #ineluda <ste
» % SFep Files ge"lv . ' (int
+ B Shell Proci bz
GoTo » |prini
5 ssh Shells = retun
A ssh Termir 8 Open in New Window
B show in Table
& Monitor
&1 Refresh F5
- Rename... F2
& Delete... Delete
E copy... stem |
Export...
Import...
= Propertie = 17 Move Up
Connectionst ——~ ~ U
DefaultUserll Properties Alt+Enter
I

Figure 26 - Connect to target

If you are using the user “root” when logging in the default password is “pass”.

(—] Enter Password - + x
System type: Linux
Host name: 192.168.1.130

Connection name: 192.168.1.130

User ID: |root [

Password (optional): [****1]

[save password

Cancel | OK

Figure 27 - Enter password

Copy application to target

Go to the location of the compiled application. You will find it under Local Files - My Home ->
workspace - hello - Debug as shown in Figure 28.

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

| v v - v
M Remote Syste 52 %= Teamw = 8| [g hello.c
£ &8 & 7| °% e
- Ef Local N c
- ¥, Local Files *
* & MyHome *
- = workspace #incl
~ & hello ~int m
- (= Debug {
Hhello.d }
hello.o
[makefile
[% objects.mk
[% sources.mk
[% subdir.mk
[€ hello.c ——
* [0 RemoteSystemsTempFiles 4 Remote
* [0 gbsc m
root@@mxﬁ
root@imxe
total 52
E Propertie & [, Remote SW = 8| drwxr-xr-
drwxr-xr-
LEJ E2 s A | il
-rW-r--r-
Property Value -rw-r--r-

Figure 28 - Local files

Right-click on the application file (he110) and select “Copy”.

44 RemoteSyste 22 - % Team} =0 ||@ hello.c &
P al rx
£ & = * hello.c
- = workspace *
* Created on
- = hello * Author
- &= Debug */
&= hello #ineluda cgtdi
Hihello, GoTo ' (int a
hello. Open .
[emake openwith ’ g;‘:::
N b'
Loobjec &1 Refresh F5
[® sourc
[subdi & Rename... F2
& hello.c ® Delete... Delete
» [3J RemoteSt=
[2017-01-03 ¥ Move...
{4 Fsl-imx-Fb- & search...
= . E D
qropensol Synchronize Cache S
» 1 Root . 30 &
% Local Shells Compare With " com:~
Replace With v -com:~
E Propertie 2 I Properties Alt+Enter | root
[[UTWXAI-XI-x & root
| 2 Y | -TWo-ooo - 1 root
-rw-r--r-- 1 root
Property Value -rw-r--r-- 1 root
" : root@imx6gea-com:~
Extension rantAimvAnas_rams -

Figure 29 - Copy application

Go to the remote system and paste the application under Sftp Files - My Home as shown in Figure
30.

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

Jr‘jv @Jf\;vcv(}vJDbDDEN
J L - HEW 3
mote Syste CoTo ,
&
£ &8 8 open in New Window
[obje .
. B show in Table \d on: Ja
Lgsoul El Monitor ithor: us
[& subs N
2] Refres F5
[2 hello. - cstdio. hs>
* 3 Remote I Rename... F2
[52017-01-¢ X Delete... Delete "t 279
A Fskimx-fE “intf("He
= turn 8;
£ qtopens|IZE T
+ & Rook y :
3 Local shells T
- &192.168.1.130 11 pmove Down
- % SFtp Files o . T
+
» % My Home roperties nker
+ & Rook |
¢+ B shell Processes |4H§RemoteSystem Details
T Ssh shells 9 192.168.1.130 52
» 8 Ssh Terminals root@imx6qea-com:~# al
root@imx6qgea-com:~# 11
total 52
(F_:'I Propertie 28 . [, Remctesw = Eq drwxr-xr-x 2 root rool

Figure 30 - Copy/paste application to target

Figure 31 shows how it looks when the application has been copied to the target.
¢+ Rook
% Local shells
- ¥ 192.168.1.130
- *, SFtp Files
- 3 MyHome

B hello

+ % Rook A Remote

» o Shell Processes = 192,168
% ssh shells root@imxé
root@imx6

total 52
(I’_:I Propertie 2% \I X, RemoteS | = O|/drwxr-xr-
i drwxr-xr-

Figure 31 - Application file on the target

Start the application

To start the application we first need to start an SSH terminal. Right-click on “Ssh Terminals” and
select “Launch Terminal” as shown in Figure 32.

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

v & Root
% Local Shells
- [192.168.1.130

= *&, SFEp Files

- & MyHome
hello

» & Rook

¢+ B shell Processes
% Ssh shells

*8 ssh Terminals
£ Refresh

. ~
= Propertie 22

Disconnect

48 Remote System De

CDT Build Console [h
09:27:21 **** Incr

F5

thing to k

Build Fin

Property
NMumber of chEi I
Port [22

Properties

Alt+Enter

Figure 32 - Launch a terminal

Figure 33 shows the terminal window.

* [J RemoteSystemsTempFiles
[E) 2017-01-03-154852_1093x801_
{5t Fsl-imx-fb-glibc-x86_64-meta-t
= qopensource-linux-x64-5.7.0.
+ % Root
% Local shells
- [192.168.1.130
- *% SFtp Files
- 3 MyHome
hello
+ % Root
¢+ B shell Processes
% Ssh shells

2 Ssh Terminals

=] Remote System Explorer - hello/hello.c - Eclipse Platform
File Edit Source Refactor MNavigate Search Project Run Window Help
=R Bl rorar|puEN eI |&F
44 RemotesSyste = - = Team} = B [¢ hello.c 2
P .
<+ 8 = * hello.c

[& sources.mk -

[% subdir.mk . Crea;ﬁghg:i ﬂ-i-grl 26017

2 hello.c *f

#include <stdio.h>
= int main(int argc, char **argv)

printf({"Hello worldyn");
return 9;

,-/\—

E Propertie % [, Remote SW =8
BER
Property Value
Number cfché 0 '
Port 2

Figure 33 - Terminal

#8 Remote System Details (@ Tasks (E nsole (@ Terminals 32 \
% 192.168.1.130)

Last login: Tue Dec 20 080:55:48 201% from 192.168.1.79
root@imx6gea-com:~# J|

Set execution permissions on the application file

chmod a+x hello

Run the application

Copyright 2021 © Embedded Artists AB

RevC

Developing using C on iMX Developer’s Kits

./hello

All of the above is shown in Figure 34.

48 Remote System Details | # Tasks | B Console | & Terminals 52 =

8 192.168.1.130 X

root@imx6égea-com:~# ls -la
total 52
drwxr-xr-x 2 root root 4096 Dec 20 01:00 .

0 ||drwxr-xr-x 4 root root 4696 Nov 30 16:58 ..
-rW------- 1 root root 77 Dec 20 80:06 .bash_history

= || -rw-r--r-- 1 root root 51 Nov 38 13:20 .profile

-rw-r--r-- 1 root root 33688 Jan 4 2017 hello
root@imx6gea-com:~# chmod a+x hello
root@imx6qea-com:~# ./hello
Hello world
root@imxégea-com: ~#

Figure 34 - Run application on target

4.5 Debug the application

For more complicated applications it is really useful to being able to debug the application, that is,
single step through the code and inspect variables. This section describes how to debug your
application from Eclipse using GDB.

First create the GDB command file (. gdbint) in the project directory. You can do this by right-
clicking on the project and then New - File.

We need to set the path to the sysroot in this file in order for GDB to load shared libraries. The path
should be the same as set in the SDKTARGETSYSROOT environment variable. Add the line below to
the file.

set sysroot /opt/fsl-imx-fb/4.1.15-1.2.0/sysroots/cortexa%hf-vfp-
neon-poky-linux-gnueabi

=] Remote System Explorer - hello/.gdbinit - Eclipse Platform
File Edit MNavigate Search Project Run Window Help
i 2 o B0 -Q- A | B O HF e
#HRemotesyste 8 . % Team| = O [¢ hello.c | [.gdbinit & =8
Y 9
& & Bl & 7 set sysroot fopt/fsl-imx-fb/4.1.15-1.2.8/sysroots/cortexadhf-vfp-neoh-poky-linux-gnueabi
2]
- Ef Local
- *% Local Files
- 3 MyHome
v [0 app_dev

+ [build-TestQuick-iMX-Debug
+ [build-Testwidget-iMx-Debug
+ [0 Desktop

+ [J Documents

+ O Downloads

+ @ hello

+ [J Music

+ (I Pictures

+ 3 Public

r gt

+ [gqtscreens

v D QLs.7.0 M Remote Sustem Details | ¥ Tasks | Bl console %2 . & Terminals X % & HI&EI® CE

Figure 35 - GDB command file

Go to Run - Debug Configurations in the menu and then right-click on “C/C++ Remote Application”
and select “New” as shown in Figure 36.

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

Create, manage, and run configurations

Debug Configurations

-+
E

o

[Tl

Configure launch settings from this dialog:

[€] ¢/C++ Application
[c] ¢/C++ Attach to Application
[E] ¢/c++ Postmortem Debugger

Jt Junit Plug-in Test

¥ Launch Group

@ 0SGi Framework

Z, Remote Java Application

[€] ¢/C++ Remote Applimﬁ‘m
Cif ¢/C++ Unit

| [7 - Press the '"New" button to create a configuration of the selected type.

|2 - Press the 'Duplicate’ button to copy the selected configuration.
% -Press the 'Delete’ button to remove the selected configuration.

2 - Press the 'Filter' button to configure filtering options.

-Edit or view an existing configuration by selecting it.

@ Eclipse Application o Configure launch perspective settings from the 'Perspectives’ preference page.
E3 Java Applet Dizlsiz

[T Java Application

Ju JUnit

Figure 36 - New debug configuration

On the “Main” tab the name of the project is specified as shown in Figure 37.

a8 Debug Configurations - +
Create, manage, and run configurations
O E X - Name: |hello Debug
(a| Main % Debugger | i Source| = Common |
[E] ¢/c++ Application Project:
[£] ¢/C++ Attach to Application 'hello 1 | Browse.. |
[€] ¢/C++ Postmortem Debugger c/c++ Application:
- [&] ¢/C++ Remote Application \.D bug/hell
@ hello Debug (Depug/heto
Cif ¢/C++ Unit | Variables... | |SearchProject.. | Browse.. |
@ Eclipse Application Build (if required) before launching
= Java Applet Build configuration: | Select Automaticall -
51 Java Application uild configuration: | Select Automatically =
Ju Junit) Enable auto build () Disable auto build
Jt Junit Plug-in Test @ y . - « .
¥ Launch Group Use workspace settings Configure Workspace Settings...
@ 05Gi Framework
Z, Remote Java Application
Apply Revert
Filter matched 14 of 14 items e
® | Close | Debug

Figure 37 - Debug configuration, Main tab

Go to the “Debugger” tab and set the path to the GDB debugger and GDB command file.

/opt/fsl-imx-fb/4.1.15-1.2.0/sysroots/x86 64-pokysdk-
linux/usr/bin/arm-poky-linux-gnueabi/arm-poky-linux-gnueabi-gdb

/home/user/workspace/hello/.gdbinit

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

Create, manage, and run configurations

Debug Configurations

[c] ¢/C++ Attach to Application
[c] ¢/C++ Postmartem Debugger
~ [c] ¢/C++ Remote Application

hello Debug

Cii ¢/C++ Unit

@ Eclipse Application

Bl Java Applet

0 Java Application

Ju JUnit

Jt Junit Plug-in Test

Launch Group

% 0SGi Framework

i, Remote Java Application

Filter matched 14 of 14items

B % T Name: \.hella Debug
| al i? Debugger . % Source| & Common|
[¢/c++ Application & Stop on startup at: [main |

Debugger Options

Main | shared Libraries | Connection

GDB debugger:

| fopt/fslimx-Fb/a.1.15-1.2.0/sysroots/x86_64-pokysdk-lint| | Browse...

GDB command File: Z[/hcme/userl/warkspace/hellc/.gdbinit

Browse...

(warning: Some commands in this file may interfere with the startup operation of the
debugger, for example "run".)

"] Non-stop mode (Noke: Requires non-stop GDB)

|| Enable Reverse Debugging at startup (Mote: Requires Reverse GDB)

"] Force thread list update on suspend

" Automatically debug Forked processes (Note: Requires Multi Process GDB)

Tracepoint mode: | Normal &

Apply

Revert |

®

Close |

Debug

Figure 38 -Debug configuration, Debugger tab

Within the “Debugger” tab select “Connection”. Enter the IP address of the target and port number as
show in Figure 39. The port number is used in the next step and is by default set to 10000.

E

Create, manage, and run configurations

Debug Configurations

o

Name: _hellc Debug

[€] c¢/c++ Application

[€] ¢/C++ Attach to Application

[€] ¢/C++Postmortem Debugger

= [€ ¢/C++ Remote Application

] hello Debug

Cii ¢/C++ Unit

@ Eclipse Application

Edl Java Applet

O Java Application

Ju Junit

Ji Junit Plug-in Test

Launch Group

4 0sGi Framework

1Z, Remote Java Application

Filter matched 14 of 14 items

Main | %% Debugger

Y, Source| E Common|

[Stop on startup at: |ﬁ|
Debugger Options
Main | Shared Libraries | Connection
Type: | TCP =
Hostname or IP address: |192.168.1.130

Portnumber:

Apply ||

Revert |

@

Close

Debug

Figure 39 - Connection settings for debug configuration

Copyright 2021 © Embedded Artists AB

RevC

Developing using C on iMX Developer’s Kits

Go back to the SSH terminal and start a GDB server on port 10000 debugging the application “hello”
as shown in Figure 40.

gdbserver :10000 hello

48 Remote System Details ['&ﬂ—l Tasks [E console | & Terminals = ; =8

9 192.168.1.130 %

root@imx6qgea-com:~# gdbserver :10000 hello
Process hello created; pid = 961
Listening on port 18680 F

I

u
0

-

Figure 40 - GDB Server

Now it is possible to start to debug the application. Click on the debug icon and then “hello Debug” as
shown in Figure 41.

a8 Remote System Explorer - hello/hello.c

File Edit Source Refa avigate Search Project Run Window Help

=R
[J{E Remote Syste 82 % Tear Debug As '
h Debug Configurations...
£ & = Organize Favorites...
- Ef Local #Flncluae <stalo.h=

- ¥, Local Files
- 3 MyHome

= int main(int argc, char **argv)

nrintfi{"Helln worldin"):

Figure 41 - Start a debug session

If you are asked to change perspective click the “Yes” button as shown Figure 42.

=] Confirm Perspective Switch - + x

9 This kind of launch is configured to open the Debug perspective when it

suspends.
u

This Debug perspective is designed to support application debugging. It
incorporates views for displaying the debug stack, variables and breakpoint
management.

Do you want to open this perspective now?

["] Remember my decision

Figure 42 - Change perspective

A debug session is now started and will break at the main function as shown in Figure 43.

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

=] Debug - hello/hello.c - Eclipse Platform - + %
File Edit Source Refactor MNavigate Search Project Run Window Help

=% Bl ro-a-|w > ums o o &5 F | & |45 Debug & "
o -s-vero-

% Debug % i ¥ = 8 ||#-variables & . % Breakpnints] it Registers}ﬁMnduleﬂ =a
- [€] hello Debug [C/C++ Remote Application] = ni i

ﬁu:il::z:g Ec;;‘le;.::]re: 0] (suspended : Breakpoint) N(:[:“:rgc i iT::e \:alue
= main() at hello.c:12 0x1042¢ b O e char ** Ox7eFFFdas

o fopt/Fsl-imx-Fb/4.1.15-1.2.0/sysroots/x86_64-pokysdk-linux/usr/bin/arm-f

[¢ hello.c 28 . [](gdb[2].proc[961].threadGroup[i1],gdb[2].proc[961].0Sthread[1]).thread[1].Frame[0]] = 0| 8 Outline 52 ﬁvisualizer} =0

@ * hello.c[] B " e % Y

#include <stdio.h> a1 stdio.h
e main(int, char**) :int

= int main(int argc, char **argv)

printf("Hello world\n");
return 8;

= lole Mo E .- =Al

(E| Fancala ©7 :T-,u.,W [n—..l..l...-.—wﬁ r....—..n--.l.l..’w A u........q} -

Figure 43 - Debug session

Copyright 2021 © Embedded Artists AB Rev C

Developing using C on iMX Developer’s Kits

5 Troubleshooting

5.1 Allow user “root” to use an SSH connection

By default, the user “root” is not permitted to login via an SSH connection. By following these
instructions “root” will be permitted to login through an SSH connection. It is, however, not
recommended to use on a final application, but during development it can be permitted.

1. Open the configuration file for the SSH server

nano /etc/ssh/sshd config

2. Find the line that starts with #PermitRootLogin and remove the ‘#' (hash) character. If you
cannot find this line just add it to the file (without the hash)

PermitRootLogin yes

3. Save the file and exit the editor (in nano itis Ctrl-X followed by Y and Enter).
4. Restart the SSH server

/etc/init.d/sshd restart

Copyright 2021 © Embedded Artists AB Rev C

	1 Document Revision History
	2 Introduction
	2.1 Conventions

	3 Getting started
	3.1 Install toolchain
	3.2 Hello world
	3.3 Run the application on target

	4 Eclipse
	4.1 Updates to the Yocto image
	4.2 Install Eclipse
	4.3 Create and configure a project
	4.4 Run the application on target
	4.5 Debug the application

	5 Troubleshooting
	5.1 Allow user “root” to use an SSH connection

